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The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias
are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time
correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations.
Additionally, the evolution of the model’s spectral properties are simulated in an alternative representation,
defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting
of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are
studied. This representation is shown to contain additional information about the dot’s population
dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable
qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found
including incorrect trends and spurious temperature dependent effects.
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The nonequilibrium physics of strongly correlated
systems is a fundamental issue at the cutting edge of
research in condensed matter physics. Out-of-equilibrium
processes can be manipulated and studied in cold atomic
gases [1–3] or by using ultrafast spectroscopy [4,5], and are
relevant for the understanding of phenomena ranging from
the behavior of atoms [6], molecules [7], and nanocrystals
[8] adsorbed on surfaces to transport in molecular elec-
tronic devices [9,10]. The problem is theoretically chal-
lenging because the strong correlations render perturbative
techniques inapplicable while the nonequilibrium aspects
preclude the use of most standard statistical-mechanics
techniques. The principal methods rely on real-time propa-
gation from some initial condition and are limited in the
times which can be accessed. For steady state a numerically
exact description in terms of Matsubara voltages can
bypass time propagation, but becomes biased by the need
to perform analytical continuation [11,12]. Direct equation
of motion techniques are sometimes applicable where
initial correlations can be neglected [13], but at computa-
tional costs similar to direct propagation. The theoretical
challenges become particularly acute when one is interested
in steady state correlation functions: converged results
require propagation to times long enough so that steady
state is reached, and beyond that to the times needed to
define the correlation function.
One simplifying aspect of many interesting cases is that

the important many-body correlations may be taken to be
localized in space, either by the physical situation (for
example, a quantum dot where the interactions are confined
to the region of the dot and the leads may be taken to be
noninteracting) or by a theoretical approximation such

as dynamical mean field theory (DMFT) which may be
formulated both in [14,15] and out of [16,17] equilibrium
and provides an approximate solution of the properties
of a spatially infinite system in terms of the solution of a
quantum impurity model.
A crucial bottleneck in the applications of DMFT to

the nonequilibrium situation has been the lack of impurity
solvers which can access the long time behavior. In
particular, nonequilibrium DMFT requires the evaluation
of the dynamical electron propagator, a two-time correla-
tion function. Recent years have seen the development of
several controlled nonequilibrium impurity solvers with
this capability, including work based on interaction expan-
sion Monte Carlo [18], exact diagonalization [19,20], and
hierarchical equation of motion techniques [21–23]. These
approaches have provided important insights into the
physics of strongly correlated systems out of equilibrium,
but all carry intrinsic limitations and are viable only in
particular parameter regimes. Monte Carlo methods are
restricted by the dynamical sign problem to short propa-
gation times, making it difficult to obtain high-resolution
spectral information or access the nonequilibrium steady
state [24]. On the other hand, the exact diagonalization and
equation of motion methods have a very unfavorable
computational scaling because the spectral structure of
the noninteracting baths must be represented by a small
number of degrees of freedom. A general and unbiased
computational scheme capable of representing spectral data
at the level required for comparison to experiment or for
general DMFT applications remains sorely needed.
Recently,amethodforextractingnumericallyexactspectral

informationandcorrelation functions fromreal-timebold-line
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[25,26] continuous time Monte Carlo (bold-CTQMC)
calculations [27,28] has been put forth [29] which largely
circumvents many of the limitations of previous real-time
Monte Carlo methods. The method can access substantially
longer times than were previously accessible, and in combi-
nation with memory function methods [30–32] has been
shown to enable the computation of single-time observables,
such as the magnetization density, out to unprecedentedly
long times [33]. In this Letter we show that the new bold-line
methods enable the calculation of the steady-state non-
equilibrium two-time electron Green’s function and lead to
new insights into the evolution of the system towards steady
state for the prototypical example of the nonequilibrium
Anderson impurity model. We follow the formation of the
Kondo peak after a gate quench, showing how the electron
spectral function evolves to its steady state value, demon-
strate the long-suspected voltage splitting of the Kondo
resonance in the presence of a bias voltage [34–40], and
establish that the current-voltage characteristic of a quantum
dot provides an inaccurate representation of the many-body
density of states. The impurity solver described here works
in a manner practical for the needs of nonequilibriumDMFT.
In particular, the computational complexity of our approach
is independent of both the dot-bath coupling density and the
final spectral resolution desired.
We have used the bold-line methods [27,28] to directly

evaluate two time correlation functions but we find that more
accurate and efficient access to the steady-state spectral
function may be obtained from a variant of an insightful idea
originally proposed as an experimental configuration for
probing transport in quantum dots [41,42]. In its original
form the idea was to relate the spectral function to the voltage
dependence of a current flowing through a single additional
weakly coupled auxiliary lead A (Fig. 1, top left):

AauxðVA; tÞ ¼ lim
ΓA→0

− 1

ΓAπ

dIAðtÞ
dVA

: (1)

As t approaches infinity while the auxiliary lead is kept at a
fixed chemical potential VA, AauxðVA; tÞ becomes time
independent and approaches Aðω ¼ VAÞ≡−ð1=πÞℑ
fGrðω ¼ VAÞg. We find [29] that a theoretically more
convenient (although experimentally impractical) represen-
tation may be achieved by considering the current I flowing
between two auxiliary leads (Fig. 1, top right) which are
weakly coupled to the systems only at a predefined
frequency ω0 [ΓA ¼ ηδðω − ω0Þ] with η much less than
the typical physical coupling Γ to the principal leads. We
take one of the leads to be full (f: chemical potential
much higher than any relevant scale) and one to be empty
(e: chemical potential much lower than any relevant scale).
Then,

Aauxðω; tÞ ¼ lim
η→0

− 2h
eπη

½IfAðω; tÞ − IeAðω; tÞ�: (2)

In addition to its computational advantages, this formal-
ism provides physical insight into the evolution of dot
properties after a quench. At any given time, the full
lead injects electrons into the system at frequency ω and
at a rate of −IfAðω; tÞ, and should thus (neglecting the
response properties of the auxiliary lead itself) be propor-
tional to the density of electronic excitations at this
frequency and time; similarly, IeAðω; tÞ probes the density
of hole excitations. Experimentally, one would only have
access to Aaux, which is proportional to the total (electron
+hole) excitation density. In equilibrium or in steady
state outside the bias window (up to ∼kBT) clearly only
the empty or full probe contributes and excitations can be
distinguished by type. For comparison, if AðtÞ is obtained
only for a finite time interval, its Fourier transform yields
only a discrete set of energies approximating AðωÞ. Since
Aauxðω; tÞ provides frequency-rich information at all
times, and since (unlike the two-time correlation function)
an experimental pathway for directly measuring it has
been suggested, we suggest that it is an interesting and
potentially useful quantity to explore in its own right.
The model we treat consists of an Anderson impurity [43]

coupled to two leads held at different chemical potentials
(upper panels, Fig. 1). Physical realizations include transport
in molecular junctions and scanning microscopy studies of
adsorbed atoms. However, we emphasize that the method is
equally applicable to other nonequilibrium situations includ-
ing Hamiltonians with explicit time dependence arising in
irradiated quantum dots and in the dynamical mean field
analysis of pump-probe experiments. Setting ℏ ¼ e ¼ 1, the
Anderson model Hamiltonian is

H ¼ HD þHB þ V; (3)

FIG. 1 (color online). The experimental auxiliary lead setup
(top left) and the double probe scheme (top right) are illustrated.
Below, the steady state spectral function AðωÞ is shown at several
voltages. The results are obtained from bold-CTQMC calcula-
tions using the double probe auxiliary lead formalism at Γt ¼ 10.
Error bars estimate statistical Monte Carlo errors.
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HD ¼
X

σ∈f↑;↓g
εσd

†
σdσ þ Un↑n↓; (4)

HB ¼
X

a¼L;Rσk

εσka
†
aσkaaσk; (5)

V ¼
X

aσk

ðVaσka
†
aσkdσ þ H:c:Þ: (6)

Here, d†σðdσÞ operators create (destroy) electrons with spin
σ ¼ �ð1=2Þ and energy εσ on the dot; a†aσkðaσkÞ operators
create (destroy) electrons with spin σ and energy εσk in the
left (a ¼ L) or right (a ¼ R) lead, where the indices k
enumerate levels; and the Vaσk define the dot-lead hybridi-
zation (an analogous definition applies to the auxiliary lead).
The lead dispersions and the coupling strengths are deter-
mined by a coupling density ΓL=RðωÞ ¼ 2π

P
k∈L=RV

�
σk

Vσkδðω − εkÞ. In the rest of this Letter we will take the Γ
to be identical for the two leads and spins (this is done for
convenience and is by no means a limitation of the method).
We choose a flat, soft-edged coupling density ΓL=RðωÞ ¼
ððΓ=2Þ=ð1þ eνðω−ΩcÞÞð1þ e−νðωþΩcÞÞÞ, and in order to
keep the discussion simple, all results shown are at an
interaction of U ¼ 6Γ, an inverse temperature of βΓ ¼ 3, a
bandwidth of Ωc ¼ 10Γ and an inverse band edge width of
ν ¼ 10Γ−1 (except where stated otherwise). The system is
expected to have a Kondo temperature of ∼0.2Γ. We also
hold the chemical potentials in the two leads at a symmet-
rically applied bias μL=R ¼ �ðV=2Þ (we note in passing that
the main limitation of the method is in accessing low
temperatures [27]. Starting from decoupled dot and leads
we then time evolve the system for some time Γt until steady
state has been reached. The dot is initially empty. The
coupling to the auxiliary leads described in the previous
chapter is η ¼ 10−3Γ.
The effect of voltage on the spectral function is illustrated

in Fig. 1. At zero voltage the Kondo peak can clearly be seen
as it begins to form (the temperature studied is at the upper
edge of the Kondo regime). With the application of a bias
voltage, the peak lowers, widens, and eventually splits.
While the magnitude of the Kondo effect decreases when the
system is driven away from equilibrium, the effect is
obviously not destroyed by the bias, and partial hybridiza-
tion of the dot with each lead occurs simultaneously. Except
at frequencies much higher than the bias, the spectral
function is also significantly modified by the nonequilibrium
conditions, indicating that the equilibrium spectral function
is an inappropriate quantity for the description of non-
equilibrium physics. We note that the equilibrium aspects of
this problem may be addressed by the numerical renorm-
alization group [44], which is expected to bemore efficient at
low temperatures. However, outside equilibrium this has
never been achieved, and it has been suggested that this is
due to a fundamental limitation of the Wilson mapping [45].

The time dependence of Aaux is illustrated in Fig. 2,
which shows what the results of a time-dependent meas-
urement of Aaux would look like if the dot begins devoid of
electrons and decoupled from all leads. At short times, near
the bottom edge of each of the three panels, a peak forms
(before disappearing) near the single-particle resonance
energy εσ ¼ −3Γ. This corresponds to the availability of
electronic levels and is quickly followed by the formation
of corresponding hole levels at positive frequencies, though
experimentally we would not be able to distinguish
electrons from holes. At longer times, as the dot begins
to fill, one can observe near the top edges of the panels the
formation of the steady-state spectral properties including
the equilibrium Kondo resonance (top panel) and its
voltage widened (middle panel) and split (bottom panel)
variations. The calculated quantity (and the hypothetical
experiment) therefore provides direct access not only about
steady-state spectral properties, but also to the dynamical
evolution of the system’s total density of single particle
excitations. Combined with knowledge about the initial
conditions, this provides information about the population
dynamics.
A more conventional view of the dynamics is provided in

Fig. 3. Here we display the standard spectral function AðωÞ
at V ¼ 0 and V ¼ 4Γ as a two-time correlation function
(left panels) and as a function of frequency and time (right
panels). Notably, these correlation functions are exactly
the objects used in time-dependent DMFT [18,46]. The
frequency-space property is obtained from the discrete
Fourier transform of the two-time property. The two-time
correlations exhibit little structure in the cases shown, due
to the lack of explicit time dependence in the Hamiltonian,
but interestingly the nonequilibrium nature of the dynami-
cal evolution actually adds some noticeable correlations at
long times. At finite times frequency resolution is limited to
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FIG. 2 (color online). The time evolution of the spectral function
AauxðωÞ shown at several voltages, obtained from bold-CTQMC
calculations using the double-probe auxiliary lead formalism, with
η ¼ 10−3Γ.
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Δω ¼ ðπ=tÞ, where t is the propagation time. In the finite
voltage case, it actually seems as if a central peak forms
before the peak splitting occurs, which differs from what is
observed when Aaux is examined. Also, unlike Aaux, A
obeys particle-hole symmetry at all times.
Within linear deviations from equilibrium in the voltage,

the normal differential conductance through the device—
that is, the voltage derivative of the current I through the
strongly coupled left or right terminal—can be interpreted
as an estimator for the equilibrium spectral function.
However, as Fig. 1 clearly shows, the application of voltage
beyond the linear response regime significantly modifies
the spectral density. It is therefore of some interest to see
how the use of normal current in the nonequilibrium case
fares in practice as a measure of equilibrium properties
within a numerically exact framework. The top panel of
Fig. 4 shows the equilibrium spectral function at two
different inverse temperatures. Below this, the lower panel
of Fig. 4 displays the steady state differential conductance
for the same parameter sets.
The two heavy blue βΓ ¼ 3 curves or the two lighter red

βΓ ¼ 1 curves appear superficially similar at first glance.
The clearest differences are a slight lowering and narrowing
of the Kondo peak, a slight accentuation of the Hubbard
peaks, and a small Kondo-like peak which appears in the
differential conductance at a temperature where it does not
yet exist in the spectral function. Comparing the two sets of
curves side by side, however, brings the inaccuracies of the
differential conductance as an estimator for the spectral
function into sharp contrast: the differential conductance
exhibits a high-frequency temperature dependence com-
pletely absent from the spectral function, with a temper-
ature dependent trend at intermediate frequencies that is
actually reversed. A certain degree of caution is therefore

appropriate when applying the linear-response interpreta-
tion to current measurements.
To summarize, we have implemented the computation of

Green’s functions within real time bold-QMC calculations in
nonequilibrium using both correlation functions and a
double-probe auxiliary current formalism. We obtained
the spectral function of the nonequilibrium Anderson model
and demonstrated the voltage splitting of the Kondo peak
within a general, numerically exact framework. Through our
formalism the dynamics of the excitation density of states
starting with a coupling or gate quench and up to the
formation of a Kondo peak was studied, with and without a
bias voltage (the formalism is also applicable to other quench
types, such as voltage, temperature, or interaction quenches).
We have shown that the auxiliary lead interpretation and the
associated experimental setup provides access not only to
steady state spectral properties, but also to information about
the excitation and (indirectly) population dynamics of the
system. Finally, we have discussed the use of current
measurements in the more common two lead setup to access
the equilibrium spectral properties of the Anderson model,
demonstrating that while the differential conductance pro-
vides a good qualitative estimator for spectral functions, it
also fails in reproducing temperature trends at lower
frequencies while introducing spurious trends at high ones.
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FIG. 3 (color online). The time evolution of the real part of the
retarded Green’s function ℜfGrðt; t − t0Þg (left panels) and the
spectral function AðωÞ (right panels) at voltages indicated, as
calculated from two time correlation functions within bold-
CTQMC calculations.
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FIG. 4 (color online). The steady state spectral function AðωÞ
(upper panel) compared to the steady state differential conduct-
ance (middle panel) as a function of half the voltage at two
different inverse temperatures β. Both observables are obtained
from bold-CTQMC at Γt ¼ 10. The area between the curves are
shaded according to the maximal value and vertical dotted lines
mark crossing points. The bottom panel displays all results: the
solid lines are the spectral function and the dashed curves are the
differential conductance.
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Looking forward, the tools presented here not only
provide new insight into transport in quantum impurity
models, but also provide the functionality required by an
impurity solver within nonequilibrium DMFT: bold-
CTQMC calculations can provide spectral data which
can be incorporated into DMFT calculations incorporating
multiple leads at different thermodynamic parameters, as
well as two time correlation functions for time-dependent
DMFT. It is practically useful up to times and interaction
strengths substantially greater than those of previous
Monte Carlo methods, while maintaining the critical
advantage of the Monte Carlo method in resolution over
other methods. The bold-CTQMC method is therefore
expected to have important consequences in the study of
strongly correlated systems out of equilibrium.
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