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Ionic transport in conventional ionic solids is generally considered to proceed via independent diffusion
events or “hops.” This assumption leads to well-known Arrhenius expressions for transport coefficients,
and is equivalent to assuming diffusion is a Poisson process. Using molecular dynamics simulations of the
low-temperature B1, B3, and B4 AgI polymorphs, we have compared rates of ion hopping with
corresponding Poisson distributions to test the assumption of independent hopping in these common
structure types. In all cases diffusion is a non-Poisson process, and hopping is strongly correlated in time.
In B1 the diffusion coefficient can be approximated by an Arrhenius expression, though the physical
significance of the parameters differs from that commonly assumed. In low temperature B3 and B4,
diffusion is characterized by concerted motion of multiple ions in short closed loops. Diffusion coefficients
cannot be expressed in a simple Arrhenius form dependent on single-ion free energies, and intrinsic
diffusion must be considered a many-body process.
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Ionic transport in crystalline solids is a fundamental
process of prime importance to solid-state reactions and
the behavior of solid-state devices such as batteries, fuel cells,
and chemical sensors. Mass and charge transport are char-
acterized by diffusion coefficients and ionic conductivities,
respectively. Differences in transport rates between materials
depend on the relationships between these ensemble transport
coefficients and the microscopic diffusion mechanisms that
govern the motion of individual ions. A long-standing
question in this regard is how this relationship between
microscopic and macroscopic descriptions of transport varies
with crystal structure [1]. Here we focus on “conventional”
ionic structures, such as wurtzite and rocksalt, that are
intrinsically poor ionic conductors. Understanding the rela-
tionship between structure and transport in these materials is
motivated in part by observations of greatly enhanced
conductivities when they are prepared in nanoscale particles
[2,3], where local structure effects may be significant.
The strong effect of crystal structure on ionic transport is

exemplified by the ionic conductivities of AgI polymorphs.
Under ambient conditions AgI forms the thermodynamically
preferred wurtzite-structured (B4) β phase or the metastable
zinc-blende-structured (B3) γ phase. Both phases are poor
ionic conductors: at 420 K the conductivity of β AgI is
∼4.5 × 10−4 Ω−1 cm−1 [4], and molecular dynamics simu-
lations predict an even lower intrinsic ionic conductivity
for γ AgI [5]. Above 420 K β AgI undergoes a phase
transition to the superionic α phase, in which the iodide ions

are arranged in a bcc lattice with the mobile silver ions
distributed over one sixth of the available tetrahedral sites
[6,7]. The β → α transition is associated with an increase in
silver-ion conductivity of over 3 orders of magnitude [8].
Applying pressure to β AgI causes a phase transition to
a rocksalt-structured (B1) phase above 1.0 GPa, associated
with an increase in room-temperature conductivity of
2 orders of magnitude [9].
The excellent silver ion mobility of α AgI is attributed to

the high concentration of vacant sites in the silver sublattice,
which gives low activation barriers to diffusion [6,7]. In
contrast, the low-temperature B1, B3, and B4 phases have
fully occupied silver sublattices in the perfect crystals,
and ionic transport is expected to occur via conventional
Frenkel pair “hopping” mechanisms, where thermally gen-
erated vacancies and interstitials diffuse by a series of
discrete events or hops [10].
For a generic hopping diffusion mechanism, if ion hopping

occurs at random (i.e., hopping probabilities of individual ions
are statistically independent) then application of Vineyard’s
absolute rate theory allows the diffusion coefficient D to be
written in the well-known Arrhenius form [11,12]:

D ∝ n exp ð−ΔGhop=kTÞ; (1)

where n is the number of species capable of effecting hops per
unit volume, and ΔGhop is the free energy barrier associated
with the motion of a single ion [10,11]. In an ionic crystal n is
usually considered to be the concentration of point defects:

PRL 112, 145901 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

0031-9007=14=112(14)=145901(5) 145901-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.112.145901
http://dx.doi.org/10.1103/PhysRevLett.112.145901
http://dx.doi.org/10.1103/PhysRevLett.112.145901
http://dx.doi.org/10.1103/PhysRevLett.112.145901


n ¼ ndef . At low temperatures ndef is fixed by the concen-
tration of extrinsic aliovalent dopants or impurities and is
independent of temperature. At high temperatures intrinsic
defect formation can dominate ndef and the expression for D
can be modified to take this into account: e.g., for a Frenkel
disordered material, such as the low-temperature phases of
AgI, ndef ¼ exp ð−ΔGFP=2kTÞ, with ΔGFP the free energy
for Frenkel pair formation. This independent hopping model
predicts an Arrhenius plot of logðDÞ versus 1=T will consist
of a series of straight lines. The slope of each line defines an
activation energy that is linearly dependent on free energy
differences conceptually associated with displacements of
individual ions. Because this derivation relies on the
application of absolute rate theory, it is important for
the understanding of ionic transport in conventional (non-
superionic) ionic solids to be able to test the assumption of
independently occurring hops.
If ionic hopping is a random process the probability of a

specific hop occurring in time Δt depends only on the
average hopping rate. This is formally equivalent to
requiring that ion hopping is a Poisson process with a
frequency distribution of

PkðλÞ ¼
λke−λ

k!
; (2)

where Pk is the probability of observing k events in time
window Δt, and λ is the mean number of events in all
equivalent time windows [13].
In this Letter we describe molecular dynamics simulations

of the B1, B3, and B4 polymorphs of AgI. By expressing
diffusion as a series of discrete diffusion events (hops) we
directly compare hopping frequency probabilities against
equivalent Poisson distributions to test the validity of the
independent hopping model. In the B1, B3, and B4 low-
temperature phases of AgI we find intrinsic diffusion is a
non-Poisson process and ion hops are strongly correlated in
time. The dominant transport mechanism varies with lattice
structure, which manifests as qualitatively different

relationships between ensemble diffusion coefficients and
ionic conductivities for the tetrahedrally coordinated B3 and
B4 phases versus the octahedrally coordinated B1 phase.
Constant volume molecular dynamics simulations were

performed using the PRV rigid-ion potential [14], with a
time step of 200 au (4.84 fs), for a total length of 3.2 ×
106 steps (∼15.5 ns) at each temperature. System sizes
were B4: 896 ions, B3: 1008 ions, B1: 1000 ions. The
B4 and B3 calculations used an optimized zero-pressure
volume obtained for stoichiometric B4 AgI at 0 K of
71.68 Å3 per molecular unit and a c=a ratio of 1.6,
following the procedure of Zimmer et al. [15]. The high-
pressure B1 phase was simulated at a volume of 67.27 Å3

per molecular unit, which gives sufficient positive pressure
to stabilize this high-pressure phase across the range of
simulation temperatures [16].
Ionic conductivities σ, and Agþ diffusion coefficients

DðAgþÞ were calculated from the long-time slopes of the
charge density and individual ion position mean-squared
displacements, respectively [5]. The ionic conductivities are
ordered B3 < B4 ≪ B1 [Fig. 1(a)], which is consistent with
the experimentally observed ×102 conductivity increase at
room temperature for B1 AgI relative to B4 [9]. The Agþ
diffusion coefficients show the same trend as the ionic
conductivities [Fig. 1(b)]. Statistical errors for the diffusion
coefficients are reduced compared with the conductivities
because of the additional averaging over Agþ ions, and the
diffusion data plotted as logðDÞ versus 1000=T appear as
straight lines, suggesting Arrhenius-like behavior.
σ and D are related by the Nernst-Einstein equation,

σ

D
¼ nq2

kT
fNE; (3)

where n is the number of mobile ions per unit volume and
q their charge. fNE is the Nernst-Einstein factor. In cases
where ionic motion is correlated, charge and mass transport
are not equivalent and fNE deviates from unity. For in-
dependent vacancy and interstitial hopping mechanisms
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FIG. 1 (color online). Calculated transport coefficients for B1, B3, and B4 AgI: (a) Ionic conductivities, σ; (b) Agþ diffusion
coefficients, DðAgþÞ; (c) Nernst-Einstein factor, fNE. Dashed lines in (a) indicate conductivities too small to measure, giving fNE → 0
in these regions in (c).
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in the B1, B3, and B4 lattices calculated values of fNE are
in the range 1–3 [17]. Values of fNE from the simulation
data are shown in Fig. 1(c). For B1 fNE ≈ 1.4 across the
temperature range, which is consistent with a combination
of independent vacancy and interstitial hopping by ther-
mally generated Frenkel pairs. B3 and B4, however, show
a strong temperature dependence: fNE ≈ 1 at high temper-
atures but decays approximately exponentially as the tem-
perature decreases. The low temperature values of fNE ≪ 1
are inconsistent with the calculated values for independent
vacancy or interstitial hopping [17], which suggests that
alternate diffusion mechanisms mediate intrinsic Agþ trans-
port in B3 and B4 AgI.
For the independent hopping model to be valid it is

necessary that ion hopping is a Poisson process. For each
simulation trajectory we have expressed the ionic transport
process as sequences of “diffusion events.” At every time
step each Agþ ion occupies a specific lattice or interstitial
site [18]. If a Agþ ion moves out of a lattice site, it must later
either return to this same site, in which case the sequence
does not contribute to diffusion and is discarded, or occupy a
second lattice site. The process of a Agþ ion moving from
one lattice site to another is classified as a diffusion event or
hop. Any such process occurs over a number of simulation
steps, and to simplify our analysis we define a diffusion
event as being coincident with the final site occupation. The
set of diffusion events provides a discretized microscopic
description of the diffusion dynamics throughout a simu-
lation. In the AgI systems modeled here, nearly all diffusion
events consist of motion between nearest-neighbor lattice
sites, and the average rate of these hops is proportional to
the macroscopic diffusion coefficient (cf. Supplemental
Material, Fig. S1 [19]) [20].
For any discrete process, the probability of k events

occurring in time Δt is described by the probability mass
function (PMF). Figures 2(a) and 2(b) show diffusion event
PMFs observed for nonstoichiometric B1, B3, and B4 AgI
simulations, constructed with two Agþ ions either removed
or added to give an excess of vacancies or interstitials. Under
these conditions diffusion is dominated by the hopping of
these extrinsic point defects. Comparing these PMFs with
exact Poisson distributions for the same average values of k
shows close agreement: under nonstoichiometric conditions
transport of excess Agþ vacancies and interstitials is con-
sistent with independent hopping and the derivation that
leads to Eq. (1) is valid. For stoichiometric B1, B3, and B4,
however, there are large discrepancies between the diffusion
event PMFs and the corresponding Poisson distributions (the
“goodness of fit” between calculated PMFs and correspond-
ing exact Poisson distributions [21,22] is quantified in the
Supplemental Material [19]). All three polymorphs show
non-Poisson diffusion, even though fNE deviated from
values for independent hopping processes only for the B3
and B4 phases.
The disagreement between the diffusion event PMFs and

the corresponding exact Poisson distributions indicates

temporal correlation between intrinsic diffusion events in
B1, B3, and B4 AgI. This is also evident in running totals of
diffusion events taken from individual representative simu-
lations (Fig. 3). Within any single analysis frame
(250 time steps ≈ 1.2 ps) no single diffusion events are
observed. Diffusion events occur in clusters that are
separated by long times containing zero diffusion events.
The B1 data exhibit “cascades” of multiple diffusion
events (Fig. 3) as well as smaller clusters containing only
a few events.
The non-Poisson hopping statistics for these low temper-

ature phases mean that intrinsic ionic transport in these
materials cannot be described as a simple average over
independent diffusion events. Instead, examining the rela-
tionships between individual diffusion events is necessary to
understand the net contributions to mass and charge trans-
port. The relationship between individual diffusion events
can be described by constructing “diffusion chains.” These
chains are constructed by connecting pairs of events that
share one common lattice site as the origin site for one event
and the destination site for the second event. A diffusion
event cannot be completed before the ion originally
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FIG. 2 (color online). PMFs for k diffusion events observed in
time Δt ¼ 12 500 time steps (≈60.5 ps). Simulation data (filled
circles) are shown for B1 (yellow), B3 (green), and B4 (blue)
AgI on both linear (left panels) and log10 (right panels) scales.
(a) Excess vacancies (300 K=350 K=350 K) (b) Excess inter-
stitials (300K=350K=350K) (c) Stoichiometric (450 K=550 K=
550 K). Open circles (dashed lines) show exact Poisson distri-
butions with equivalent values of hki. Data for stoichiometric
B4 (550 K) with Δt ¼ 2500 to 62 500 time steps are included in
the Supplemental Material (Fig. S3) [19].
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occupying the destination site departs, thus initiating a
second diffusion event that can, in turn, only be completed
after a third accessible site is vacated (see Supplemental
Material [19], Fig. S2) [23]. This definition of chains
provides a course-grained description of transport that
ignores the chronological order of diffusion events. The
net contribution of a chain to DðAgþÞ is proportional to
the number of diffusion events in each chain, whereas the
contribution to σ depends on the vector sum of all component
diffusion events.
In a stoichiometric system, diffusion chains are initiated by

Frenkel pair formation and terminated by Frenkel pair
recombination. To understand the contribution specific chains
make towards ensemble diffusion and conductivity it is
instructive to consider the limits of “long” versus “short”
chains. For long chains the transport behavior will approxi-
mate that of a well-separated noninteracting vacancy and
interstitial pair, with each defect expected to diffuse by an
independent hopping process that obeys Poisson statistics.
This “open chain” behavior is exhibited during the multiple-
hop cascades observed in the B1 simulations (cf. Fig. 3). The
diffusion event PMF generated by analyzing only these
cascades closely follows the corresponding exact Poisson
distribution, and is quantitatively consistent with an average
of the hopping rates from nonstoichiometric excess vacancy
and interstitial simulations performed at the same temper-
ature. Because transport in long chains tends to that of
independent vacancy-interstitial pairs, in a system where long
chains dominate transport fNE is predicted to be≈1. The limit
of short chains corresponds to closed loops. Although the
contribution to ensemble diffusion is the same as in the open-
chain limit, proportional to the number of diffusion events in
the chain, the contribution to the ionic conductivity is zero,
because a closed loop of diffusion events gives no net
displacement of charge. For a system where transport is
effected predominantly by short chains this predicts fNE → 0.
The relationship between chain length and contribution to

ionic conductivity in these limiting cases suggests that the
contrasting behavior of fNE in B1, B3, and B4 is connected
to the distribution of chain lengths for each simulation. As
a coarse measure of whether diffusion occurs predominantly
in short versus long chains, we calculate the probability that

a diffusion event in a simulation occurs in a chain of length
< 5, denoted Pf3;4g [Fig. 5(a)] [24]. The relative contribution
to transport from short versus long chains can then be
expressed as a free energy difference ΔGf3;4g;

ΔGf3;4g ¼ −kT ln
Pf3;4g

1 − Pf3;4g
; (4)

plotted in Fig. 5(b). For B1, Pf3;4g is low at all temperatures
(ΔGf3;4g > 0). Ionic transport is dominated by diffusion
events in extended chains, and behaves approximately as for
independent vacancy-interstitial pairs. Neglecting contribu-
tions from the small proportion of short chains,DðAgþÞ can
be expressed in an Arrhenius form that depends on the
free energy associated with forming independent vacancy-
interstitial Frenkel pairs, ΔGiFP:

D ∝ exp ð−ΔGiFP=2kTÞ exp ð−ΔGhop=kTÞ: (5)

For B3 and B4 at low temperatures Pf3;4g is high
(ΔGf3;4g < 0Þ. Transport is characterized by short chains,
which must be closed loops and therefore do not contribute
to ionic conductivity. This explains the strong deviations
from Nernst-Einstein behavior at low temperatures in these
phases. With increasing temperature a greater proportion of
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diffusion events occur within extended chains (ΔGf3;4g
approaches 0). This is consistent with the increase of fNE
with temperature, and the recovery of “normal” Nernst-
Einstein behavior at high T. The coincident increase of
DðAgþÞ and fNE with temperature predicts a rapid increase
of σ with T. This is consistent with experimental super-
Arrhenius conductivities observed for B3 and B4 AgI, and
suggests this phenomenon can be explained by a switch in
the dominant transport mechanism from short to long chains
with increasing temperature [4,25].
We have shown that the common assumption that ionic

transport occurs by independent hops of mobile ions is
invalid for stoichiometric B1, B3, and B4 AgI, which can
be considered representative of conventional (nonsuper-
ionic) crystalline solids. For diffusion in the stoichiometric
materials, thermally created Frenkel pairs do not neces-
sarily dissociate into independent vacancies and intersti-
tials. This has consequences for the relationship between
the hopping statistics of individual ions and the ensemble
transport coefficients measured in experiments. We have
identified two classes of non-Poisson ion hopping, which
are distinguished by the spatial correlations between hops.
When diffusion occurs via extended open chains of hops
then defects behave similarly to noninteracting species, and
the diffusion coefficient can be expressed in an approxi-
mate Arrhenius form [Eq. (5)]. Alternately, when diffusion
occurs via short closed loops of hops then diffusion
coefficients cannot be expressed in a simple Arrhenius
form that depends only on single-ion free energies, and
intrinsic diffusion must be considered a many-body process.
In general, intrinsic diffusion in B1, B3, and B4-structured
materials should not be assumed to occur via independent
hopping, and it may not be possible to relate activation
energies for experimental transport coefficients to micro-
scopic free energy barriers involving the motion of single
ions [26]. Although we are not aware of experimental data
that confirm these findings, we hope that the demonstration
that ionic transport in even structurally simple ionic solids
can be much more complex than previously assumed will
stimulate experimental studies in this area.
For AgI the octahedrally coordinated B1 phase exhibits

predominantly open chain diffusion, whereas the tetrahe-
drally coordinated B3 and B4 phases at low temperatures
exhibit predominantly closed chain diffusion, showing
defect pairs remain much more strongly bound in the
tetrahedral B3 and B4 phases than the B1 phase. This
qualitative difference in mechanism is consistent with the
increase in conductivity of 2 orders of magnitude during
the pressure-driven B4 → B1 phase transition in AgI.
Including the superionic α phase, AgI therefore exhibits
a remarkable variation between three qualitatively different
transport mechanisms within the same material, purely as a
function of crystal structure.
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