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Structurally stable atomistic one-dimensional shock waves have long been simulated by injecting fresh
cool particles and extracting old hot particles at opposite ends of a simulation box. The resulting shock
profiles demonstrate tensor temperature, Txx ≠ Tyy and Maxwell’s delayed response, with stress lagging
strain rate and heat flux lagging temperature gradient. Here this same geometry, supplemented by a short-
ranged external “plug” field, is used to simulate steady Joule-Kelvin throttling flow of hot dense fluid
through a porous plug, producing a dilute and cooler product fluid.
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I. Stationary one-dimensional shock waves.—Shock
waves are arguably farther from equilibrium than are
any other readily available states of a nonequilibrium fluid
[1–9]. In just a few collision times, or mean free paths, the
shock transforms cold equilibrium fluid (or solid) into a hot
compressed state [1–5]. Laboratory shock waves at a few
terapascals can compress condensed matter as much as
threefold, to densities and pressures far greater than those at
the center of the Earth [6]. Because the shock trans-
formation is a steady small-scale continuous process,
converting kinetic energy to internal energy without any
external heating, steady-state shock wave structures can be
replicated with computer simulations [2–5,7–9]. The inset
of Fig. 1 shows an interior snapshot of a typical (2D)
simulation, with cold particles (initially arranged in a
triangular lattice) entering at the left, and hot ones exiting
to the right. The corresponding density profile snapshot
using Lucy’s weight function for the spatial averaging
[7–11] is the smooth curve. The shock width can be
estimated from the maximum slope. It is just a few atomic
spacings. Steady-state profiles generated in this way are
fully consistent with the transient profiles generated with
[1] shrinking periodic boundaries or [2] head-on collisions
of two similar blocks of cold material [5,7–9].
Both experiments and simulations show that initially

sinusoidal shock fronts soon become planar. Steady shock
waves are accurately one dimensional [3,5,7]. Accordingly,
the mass, momentum, and energy fluxes ( in the x direction,
the propagation direction ) are all constant in the comoving
coordinate frame of Fig. 1, the frame moving with the
shock wave [1]:

fρu;Pxx þ ρu2; ðρuÞ½eþ ðPxx=ρÞ þ ðu2=2Þ� þQxg;
all three fluxes constant:

Here, ρðxÞ and uðxÞ are the mass density and the flow
velocity, PxxðxÞ is the pressure-tensor component in the
propagation direction. eðxÞ is the internal energy per unit
mass, and Qx is the heat flux vector, measuring the
conductive flow of heat in the comoving frame.
The cold entrance velocity is þus (the “shock velocity”)

and the hot exit velocity is þðus − upÞ (where up is the
“particle velocity”) in the hot fluid. Away from the shock
front the cold and hot pressure and energy have their
thermodynamic equilibrium values:
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FIG. 1. Density profile and snapshot from a typical 1D shock
wave simulation with a steeply repulsive pair potential in two
space dimensions. Simulation cell dimensions 10
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p
× 250. The

spatially averaged density profile was obtained using Lucy’s
weight function. The snapshot shows a small section of length 20
near the shock front.
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PxxðxÞ ⟶ Peq; eðxÞ ⟶ eeq:

Eliminating us and up from the three constant-flux equa-
tions gives the “Hugoniot equation” or “shock adiabat,”
Δe ¼ PΔv, where P is the mean pressure, ½Pcold þ Phot�=2,
and Δv is the overall change in volume per unit mass,
ð1=ρÞcold − ð1=ρÞhot. Though there is no external heating
there is heat flow within the shock wave structure. For
weak shock waves it is given by Fourier’s law, Qx ¼
−κðdT=dxÞ .
The limiting values of the energy flux divided by the

mass flux far from the shock wave are equal:

½eþðP=ρÞþðu2s=2Þ�cold¼½eþðP=ρÞþð1=2Þðus−upÞ2�hot:
In shock waves the inflow is supersonic so that the kinetic
energy cannot be ignored. Choosing the initial thermody-
namic state along with the particle velocity determines the
shock velocity as well as the pressure and energy of the
resulting “hot” state.
Joule-Thomson “throttling” flows.—In the 1850s Joule

and Thomson (who became Lord Kelvin in 1892) collabo-
rated on the design and analysis of experiments seeking to
quantify the “mechanical equivalent of heat.” The “Joule-
Thomson,” or “Joule-Kelvin,” experiment enforced the
throttling of a high-pressure gas through a porous plug
[12]. A detailed description of the evolution of these
experiments can be found in Ref. [14]. Within the plug
the inlet pressure is reduced to the smaller outlet pressure.
As the flow rate approaches zero the experiment becomes
isenthalpic, where the enthalpy is Eþ PV. Because there is
no external heat flow the work added at the hot high-
pressure side less that extracted on the cold low-pressure
side is the energy change:

½eþ ðP=ρÞ�high P¼!½eþ ðP=ρÞ�low P½Joule-Thomson�:

By contrast to the supersonic shock wave experiment,
kinetic energy is negligible in the typical laboratory Joule-
Kelvin experiment. The conductive heat flux (a maximum
at the shock front) is likewise invisible in the throttling
experiment, concealed by the irreversible details of the
porous plug. Otherwise, the geometry and the thermody-
namics and the constancy of the fluxes look identical to the
usual one-dimensional shock wave analyses. In both
experiment types there is necessarily a positive entropy
change within the flow, as is required by the second law of
thermodynamics.
Joule-Thomson simulations.—The structural similarity

of shock wave compression and Joule-Kelvin expansion
experiments suggests the possibility of simulating Joule-
Kelvin flows with molecular dynamics. Here we validate
and illustrate that idea for a 2D system. Our model must
incorporate a computational “porous plug” to slow com-
pressed input fluid. Pores, holes, and confining passage-
ways come to mind. But a little reflection suggests a
simpler approach—erecting a smooth potential-energy

barrier perpendicular to the flow. This approach is suc-
cessful. Apart from the entrance and exit boundaries, the
motion is entirely conservative and Newtonian. An initial
configuration, twice as dense on the left as on the right, is
created from a square lattice. Fresh columns of particles are
continually fed into the simulation from the left and are
removed once they reach the rightmost edge of the
simulation box (conveyor-belt boundaries). The entrance
internal energy can be controlled by adding y displace-
ments (to control potential energy) and/or Maxwellian
velocities (vx − u, vy) to particles as they enter (controls
the kinetic energy). In our simulation, the entrance velocity
u was 0.5, exit velocity was 1.0, and initial temperature
was 0.05.
Near the potential plug barrier an anisotropic far-from-

equilibrium state results. The fluid is first slowed and then
accelerated normal to the barrier, with the result that the
pressure and temperature are briefly anisotropic with Pxx >
Pyy and Txx > Tyy. The details of the equilibration involve
the same Maxwellian [13] time delays seen in shock waves.
Figure 2 shows a typical Joule-Thomson steady-state

particle snapshot, with similar pair and barrier potentials
chosen to minimize integration errors using fourth-order
Runge-Kutta molecular dynamics with a time step
dt ¼ 0.01:

ϕpairðr < 1Þ ¼ ½1 − r2�4;
ϕbarrierð−1 < x < þ1Þ ¼ ð1=4Þ½1 − x2�4:

Although such a potential was perfectly satisfactory for the
shock wave simulations of twofold compression it suggests
the possibility of poor behavior at high density, where the
force is a decreasing function of compression. Accordingly,
we compared results with a modified pair potential for which
the force remains constant, with its maximum value Fmax

at separations less than rmax ¼
ffiffiffiffiffiffiffiffiffiffiffið1=7Þp ¼ 0.377964473:
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FIG. 2. A Joule-Thomson snapshot. The motion is
left-to-right with cooled fluid exiting at the right boundary.
The density snapshot uses Lucy’s weight function,
ð5=12Þð1þ jxjÞ½1 − ðjxj=3Þ�3.
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ϕmaxðr < rmaxÞ ¼ ð6=7Þ4 þ Fmaxðr − rmaxÞ;
Fmaxðr < rmaxÞ ¼ 8ð6=7Þ3

ffiffiffiffiffiffiffiffiffiffiffi
ð1=7Þ

p
:

Joule-Thomson profiles including this ϕpair precaution were
not significantly changed from those with the unmodified
potential.
Corresponding time-averaged density and velocity pro-

files are shown in Fig. 3, along with the (necessarily
constant) mass flux, ρu. Just as in our shock work the one-
dimensional grid-profile averages were all computed using
Lucy’s one-dimensional smooth-particle weight function
[7–11], with h ¼ 3:

hfðxgÞi ¼
Xxj<xgþh

xj>xg−h
fjwgj;

wgj ¼ ð5=12Þ½1þ jxgjj�½1 − ðjxgjj=3Þ�3

→
Z þ3

−3
wðjxjÞdx≡ 1:

With an input speed of 0.5, which quickly accelerates to
0.62, the velocity speeds up to 1.25 on passing through the
plug potential. Straightforward Runge-Kutta simulation
converges relatively simply and quickly to a flow satisfying
slight modifications of the conservation relations which
hold for shock wave simulations.
The longitudinal momentum flux drops at the barrier

because the barrier force removes momentum. The overall
flux drop exactly matches ðFbarrier=LyÞ, with

½Pþ ρu2�left ¼ ½Pþ ρu2�right − ðF=LyÞ½F negative�:

Mass, momentum, and energy fluxes are shown in Fig. 3.
The energy flux is particularly interesting. Adding the

contributions of pair interactions ðð_xi þ _xjÞ=2ÞxijFx
ij to

the “convective flux” gives perfect agreement between
the entrance and exit flows. These contributions can be
divided equally between particles i and j. Alternatively,
they can be velocity weighted: ð_xi=2ÞxijFx

ij for i and

ð_xj=2ÞxijFx
ij for j. The effect of this choice on the energy

flux is insignificant, of order 0.001. In shock waves the
total pressure-tensor component Pxx includes the ρkTxx,
which is absent in our Joule-Thomson flux. The derivations
for these two slightly different expressions for the energy
flux are both familiar textbook fare [15]. The reason for the
difference is interesting. The x component of the purely
kinetic part of the energy flux (excluding the contributions
from ϕ and F) involves local sums cubic in the velocity
components. In the equilibrium case the cubic sum can be
expressed in terms of the stream velocity and the deviations
from it, which can in turn be expressed in terms of
temperature:

hðvx=2Þðv2x þ v2yÞi ¼ ð1=2Þhðuþ δvxÞ3 þ uðδvyÞ2i
¼ ð1=2Þu3 þ ð3=2ÞukTxx

þ ð1=2ÞukTyy:

The resulting “extra” ρukTxx can, if desired, be combined
with the potential part of uPxx so as to agree with the
continuum energy-flux expression. Far from equilibrium
this simplification does not hold and the full cubic kinetic-
theory sums must be evaluated.
In general, it is interesting to note that the hot and cold

momentum fluxes don’t match in the Joule-Kelvin experi-
ment though they do in the shock wave. (If both the fluxes,
energy and momentum, were to match, either the shock
wave or the throttling experiment would violate the second
law.) The reason for the flux drop at the barrier is the latter’s
contribution to the momentum flux, by exerting a nonzero
compressive force on the hot fluid. In our demonstration
problem the fluid is cooled substantially, in keeping with
the familiar commercial mechanism using throttling as a
model refrigerator. Like shock waves, the present high-
speed Joule-Thomson flows are contained by equilibrium
thermodynamic boundaries. A series of Joule-Thomson
states can be generated by using several plug barriers
rather than just one. Accordingly, we believe that they
will, like shock waves, provide a useful source of
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FIG. 3. Time-averaged pressure tensor and velocity (left); time-averaged mass, momentum, and energy fluxes (centre); tensor
temperature (right). The system dimensions are 200 × 40. The mass flux of unity is imposed by the rate at which fresh particles are
inserted at the left boundary.
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computer-experimental constitutive information for flow
states far from equilibrium and help in choosing the
optimum weight function for correlating microscopic and
macroscopic flow descriptions.
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