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We demonstrate the emergence of a complex state in a homogeneous ensemble of globally coupled
identical oscillators, reminiscent of chimera states in nonlocally coupled oscillator lattices. In this regime
some part of the ensemble forms a regularly evolving cluster, while all other units irregularly oscillate and
remain asynchronous. We argue that the chimera emerges because of effective bistability, which
dynamically appears in the originally monostable system due to internal delayed feedback in individual
units. Additionally, we present two examples of chimeras in bistable systems with frequency-dependent
phase shift in the global coupling.
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In spite of more than 40 years of research pioneered by
A. Winfree [1] and Y. Kuramoto [2], the dynamics of
globally coupled oscillator populations remains a challeng-
ing issue, with applications ranging from laser and
Josephson junction arrays to problems of bridge engineer-
ing and modeling of brain waves [3]. In addition to the
well-studied self-synchronization transition, of particular
recent interest are complex states between synchrony and
asynchrony [4]. On the other hand, a lot of attention has
been attracted to the regimes of the coexistence of coher-
ence and incoherence in oscillators lattices [5]. These
states, also known as “chimeras,” have been addressed
in numerous theoretical studies [6] and demonstrated in an
experiment [7]. Furthermore, it has been shown that already
two interacting populations of globally coupled identical
oscillators can for some initial conditions exhibit sym-
metry-breaking of synchrony, so that one population
synchronizes whereas the other remains asynchronous
[8]; the existence of such chimeras has also been confirmed
experimentally [9]. A natural question, addressed in this
Letter, is under which conditions can such a symmetry-
breaking into synchronous and asynchronous groups be
observed in a completely homogeneous globally coupled
population of identical oscillators.
In case of global coupling all oscillators are subject to the

same force. Therefore, if the units are identical, one may
expect that they should evolve similarly. This expectation is
rather natural and is indeed true for simple systems like the
standard Kuramoto model as well as for many other
examples from the literature. However, in a system of
identical globally coupled chaotic maps, K. Kaneko
observed one large synchronized cluster and a cloud of
scattered units (see Fig. 2(b) in [10])—a state reminiscent
of a chimera. For periodic units, namely for nonisochro-
nous Stuart-Landau oscillators, such a state has been
reported by Daido and Nakanishi [11] and Schmidt et al.
[12], who studied the cases of linear and nonlinear global

coupling, respectively, see also [13]. These observations of
identical nonlinear elements behaving differently in spite of
being driven by the same force, indicate presence of bi or
multistability. Here we demonstrate that chimeralike states
naturally appear for a minimal generalization of the popular
Kuramoto-Sakaguchi phase model to the case of globally
coupled identical phase oscillators with internal delayed
feedback, and discuss the underlying mechanism of
dynamically sustained bistability.
Globally coupled self-sustained oscillators can be quite

generally treated in the phase approximation [2]. In the
simplest case of identical sine-coupled units such an
ensemble of N units is described by the Kuramoto-
Sakaguchi model [14]:

_φk ¼ ωþ ε

N

XN
j¼1

sinðφj − φk þ βÞ ¼ ωþ εImðeiβZe−iφkÞ;

where φ are the oscillators’ phases, ε > 0 is the coupling
strength, β is the phase shift in the coupling, and Z ¼
ReiΘ ¼ N−1PN

k¼1 e
iφk is the complex Kuramoto order

parameter (complex mean field). The system is known
to tend to the fully synchronous state φ1 ¼ φ2 ¼ � � � ¼ φN ,
if the coupling is attractive, i.e., jβj < π=2, and to remain
asynchronous otherwise.
We consider a similar setup for oscillators with an

internal delayed feedback loop. The latter is a natural
ingredient, e.g., of lasers with external optical feedback
[15] and of numerous biological systems where signal
transmission in the feedback pathway may be rather slow
[16]. It is known, that phase dynamics of an autonomous
oscillator with a delayed feedback loop can be in the
simplest case represented as _φ ¼ ωþ α sinðφτ − φÞ, where
φτ ≡ φðt − τÞ, τ is the delay, and α quantifies the feedback
strength [15,17,18]. Assuming the global coupling to be of
the Kuramoto-Sakaguchi type as above, we write our basic
model as
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_φk ¼ ωþ α sinðφτ;k − φkÞ þ εImðeiβZe−iφkÞ: (1)

We start by numerical demonstration of a chimeralike
state in model (1) for parameter set ω ¼ 1, α ¼ 1=3,
β ¼ π=2þ 0.01, τ ¼ π − 0.02, ε ¼ 0.05, and N ¼ 100.
In Fig. 1(a),(b) we show this state after transients in the
dynamics are over; the snapshot and the time evolution of
the phases clearly depict a synchronized cluster of 64
oscillators and a cloud of 36 asynchronous ones. (Notice
that throughout this example we number the oscillators in a
way that units with indices k ¼ 1;…; n are in the cluster,
whereas units with k ¼ nþ 1;…; N belong to the cloud.)
Temporal phase dynamics is further illustrated in Fig. 1(c):
for the elements in the cluster it is highly regular with
nearly constant instantaneous frequencies, while oscillators
in the cloud are chaotic and their instantaneous frequencies
strongly fluctuate. Moreover, individual frequencies in
the cloud are only weakly correlated, so that the phase
differences demonstrate many phase slips and are
unbounded. This irregularity is also reflected in the strong
fluctuations of the cloud contribution to the mean field, to
be compared with nearly constant contribution from the
cluster [Fig. 1(d)].
Formation of the chimera state is illustrated in Fig. 2.

Here in panel (a) we show the cluster growth for different

initial conditions (different initial cluster size and random
uniform distribution of cloud phases); we see that the
cluster size saturates at a value between n ¼ 60 and
n ¼ 71. Notice the logarithmic scale of the time axis:
formation of the cluster with q ¼ n=N ≈ 0.5 is relatively
fast, while its further growth is an extremely slow process
(below we will argue that the full synchrony, i.e., the cluster
with q ¼ 1, cannot appear).
To show that formation of the chimeralike state is not a

finite-size effect, in Fig. 2(b) we illustrate formation of the
chimeralike state for ensembles of different sizes, up to
N ¼ 1000. In all cases the final state has cluster of size
q ≈ 0.6. As shown below, for the stability of the chimera-
like state it is important, that the fluctuation of the order
parameter R2 of the cloud does not vanish in the thermo-
dynamic limit N → ∞; Fig. 2(c) demonstrates that the
variance of R2 practically does not depend on N up to
values N ¼ 2000. This fact indicates that the units of the
cloud are not uncorrelated, but are organized in a collective
chaotic mode. Finally, we emphasize that chimeras exist
not only for parameters chosen above for an illustration, but
in a finite parameter domain, shown in Fig. 3(a) together
with domains of other types of dynamics.
Next, we present theoretical arguments explaining exist-

ence of a chimeralike state in model (1). Let us consider
first the fully synchronized, uniformly rotating one-cluster
state φ1 ¼ � � � ¼ φN ¼ Φ ¼ Ωt, where frequency Ω is yet
unknown. Substituting this expression into Eq. (1) we
obtain equation

Ω ¼ ω − α sinΩτ þ ε sin β; (2)

FIG. 1 (color online). Chimera state in model (1). (a) Snapshot
of the phases reveals that 64 oscillators (red circles, numbered
with k ¼ 1;…; 64) are in the cluster and 36 oscillators (blue
squares) belong to the cloud. For visibility, the radial coordinate
is increased proportionally to the oscillator index k. (b) Temporal
evolution φkðtÞ, shown by color/grey coding. (c) Instantaneous
frequencies of an oscillator from the cluster (upper red curve) and
of an oscillator from the cloud (lower blue curve). The average
values are h _φsynit ¼ 1.2897 (cluster) and h _φasynit ¼ 0.9033
(cloud). (d) Amplitude of the mean field component contributed
by the cluster, R1 ¼ jP64

k¼1 e
iφk j=100 (red bold line), and by the

cloud, R2 ¼ jP100
k¼65 e

iφk j=100 (blue solid line). Black dotted line
shows the amplitude R of the total mean field.
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FIG. 2 (color online). Temporal evolution of the cluster and
saturation of its size. (a) Growth of the relative cluster size q ¼
n=N for different initial conditions for N ¼ 100 oscillators.
(b) Saturation of q for different ensemble size: N ¼ 250 (red
solid), N ¼ 500 (blue dashed), N ¼ 750 (green dash-dotted), and
N ¼ 1000 (black dotted). (c) Standard deviation for the ampli-
tude of the mean field component R2 contributed by the cloud, for
different ensemble size N.
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its solution ΩðτÞ is shown in Fig. 3(b) for cases ε ¼ 0
(uncoupled oscillators) and ε ¼ 0.05 (one-cluster state).
We see that in both cases, the solution for the chosen delay
τ is unique; i.e., there is no multistability. The fully
synchronous cluster is, however, unstable. Indeed, consider
a symmetric small perturbation to two arbitrary oscillators,
φ1;2 ¼ Φ� δ. Such a perturbation is transversal to the
synchronization manifold and leaves the mean field
unchanged; it obeys linearized equation _δ¼αcosðΩτÞðδτ−
δÞ−εδcosβ. Most important is the eigenvalue which is
close to zero; using its smallness we obtain in the first
approximation λ ¼ −ε cos β½1þ τα cosðΩτÞ�−1. Because
for parameters used in Fig. 1 the quantity in brackets is
positive, the fully synchronous state for ε cos β < 0 is
unstable. Physically, this means evaporation of the oscil-
lators from the cluster. Numerical studies show that the
fully asynchronous state with uniform distribution of
phases is unstable, too. Although we cannot exclude less
trivial asynchronous states, i.e., with a nonuniform distri-
bution of phases or with several clusters and zero mean
field, we have not observed them for the chosen parameters.
A natural question is why a partial cluster with n < N

elements (we denote its phase by Φ) is stable, while the full
synchrony for n ¼ N is not. To analyze this, we again
denote the perturbed phases of oscillators in the cluster as
Φ� δ and obtain after linearization,

_δðtÞ ¼ α cosðΦτ − ΦÞðδτ − δÞ

−
�
εn
N

cos β þ ε

N

XN
j¼nþ1

cosðφj − Φþ βÞ
�
δ: (3)

Simultaneously we want to check, whether formation of
another cluster via merging of oscillators from the cloud is
possible. For this purpose we assume that two oscillators in
the cloud come close to each other, so that ΔðtÞ ¼ φk − φl,

l; k > n, is small, and we can linearize the corresponding
equations to obtain for the difference,

_ΔðtÞ¼αcosðφl;τ−φlÞðΔτ−ΔÞ

−
�
εn
N
cosðΦ−φlþβÞ− ε

N

XN
j¼nþ1

cosðφj−φlþβÞ
�
Δ:

(4)

We cannot solve Eqs. (3,4) analytically, as φjðtÞ are
unknown irregular functions of time. However, we solve
them numerically for large time interval T together with the
full system (1) and compute the corresponding Lyapunov
exponents λ¼ limT→∞ðlnδðTÞ=TÞ≈−1.25×10−2 and Λ ¼
limT→∞ðlnΔðTÞ=TÞ ≈ 2.38 × 10−2. Because the Lyapunov
exponent λ describing transversal stability of the cluster is
negative, and the exponent Λ describing transversal sta-
bility in the cloud is positive, the cluster is stable towards
evaporation of the oscillators, while merging of cloud
oscillators to another minicluster is forbidden.
Stabilization of the cluster can be qualitatively explained

as follows. Contrary to the fully synchronized case, in
presence of a cloud, oscillators in the cluster are subject to a
force which has two components, as illustrated by Fig. 1(d):
a regular force from the cluster and an irregular one from
the cloud [last term in Eq. (3)]. In the first approximation,
the irregular component can be treated as a random force,
and this effective noise is common for all elements of the
cluster. It is known that common noise tends to synchronize
oscillators [19,20]. Here, for sufficiently strong noise, this
tendency to synchrony overcomes the internal repulsion in
the cluster and stabilizes it. However, the cluster cannot
absorb all elements, because for n ¼ N the noisy compo-
nent vanishes; hence, n < N.
Considering now the system from a different viewpoint,

we discuss, why the periodic forcing from the cluster does
not entrain the cloud oscillators and they eventually do not
join the cluster. Indeed, at initial state of chimera formation
more and more oscillators join the cluster (see Fig. 2) and
the more oscillators merge into the cluster, the stronger
is the forcing on the cloud oscillators. Hence, one may
expect the increased tendency to synchrony. However, with
increase of n, the frequency of the cluster grows as
described by Ω ¼ ω − α sinΩτ þ εðn=NÞ sin β, where in
the first approximation we neglect the random forcing from
the cloud. For n ¼ 64 the estimated frequency is
Ω ¼ 1.2901, in a perfect agreement with the observed
value 1.2897 [see Fig. 1(c)]. Thus, not only the amplitude
εn=N of the forcing on nonsynchronized units grows with
n, but also the frequency mismatch. The growth of the
cluster saturates when these values drift outside of the
synchronization domain for the forced oscillators in
the cloud. To confirm this, we have determined this domain
for chosen parameters using a periodic forcing with
parameters taken from the cluster dynamics, and found
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FIG. 3 (color online). (a) Approximate domain of chimera
states (white region); ω, α, and β are same as above, N ¼ 256.
Symbol × marks the parameters used in Figs. 1, 2. In the black
domain we observed multi-cluster states, while the gray domain
corresponds to the states with zero mean field and equal rotation
frequencies for all units. (b) Solution of Eq. (2): frequency of the
one-cluster state Ω as function of τ, for uncoupled oscillators,
ε ¼ 0, (blue dashed line) and for ε ¼ 0.05 (red bold line). Vertical
black line marks τ ¼ π − 0.02.
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that the forcing with the cluster frequency and the corre-
sponding amplitude lies almost exactly at the border of the
domain. Thus, for q ≈ 65 further entrainment of oscillators
by the cluster is not possible.
The presented discussion explains the mechanism of the

dynamically sustained bistability that underlies the chi-
meralike state in our globally coupled system of identical
units: the ensemble splits into two parts with completely
different dynamics, and these parts together create a mean
field that allows such a bistability. This mechanism is
nontrivial, because, as illustrated in Fig. 3(b), for the chosen
parameters the uncoupled systems are monostable.
However, due to interaction, the oscillators become effec-
tively bistable: being forced by the same field, they exhibit
two very different dynamical patterns. The oscillators in
one group are regular and therefore easily synchronize with
each other, while the others are highly irregular and remain
in different asynchronous, although correlated, states. The
global field that leads to the bistability is dynamically
sustained in a self-consistent way.
Next we discuss less nontrivial, though more transparent,

setups where already noncoupled oscillators are bistable.
Here the coupling is organized in a way, that it acts
repulsively on the oscillators in one state and attractively
on those which are in the other state. For the first example
we consider a model,

_φk ¼ ωþ α sinðφτ;k − φkÞ þ εR sinðΘT − φk þ βÞ; (5)

where ReiΘ ¼ Z and ΘT ¼ Θðt − T Þ. In contradistinction
to our model (1), here not only individual oscillators
possess a delayed feedback loop, but the global coupling
is also delayed, with another delay time T ≠ τ. Parameters
of oscillators are taken as ω ¼ π, τ ¼ 0.99, and α ¼ 1.2, so
that uncoupled units oscillate either with the frequency
Ω1 ¼ 2.0845 or Ω2 ¼ 4.0795, i.e., are bistable. For cou-
pling parameters ε ¼ 0.1, β ¼ π=2, and T ¼ 0.2τ, we
observe a chimera state (not shown, very similar to the
state depicted in Fig. 4), which can be explained as follows.
Suppose there is a nonzero mean field with the frequency ν.

In the first approximation, the delay in the coupling is
equivalent to the phase shift νT which sums with the
constant phase shift parameter β. The coupling is attractive
if the total shift obeys jνT þ βj < π=2, and repulsive
otherwise. Since the phase shift is frequency dependent,
the effective coupling through the same global mean field
is attractive for individual oscillators having frequency
ν ¼ Ω1 and repulsive for those with ν ¼ Ω2. As a result, the
subpopulation of oscillators which initially are in the state
with Ω1 synchronize, while the elements with Ω2 remain
asynchronous.
A similar scenario can be implemented with bistable

identical oscillators without delays. Consider N Stuart-
Landau-type oscillators, (here written in polar coordinates
rk, φk) having two stable limit cycles and let these
oscillators be globally coupled via an additional linear
circuit, described by variable u:

_rk ¼ 0.1rkð1 − r2kÞð4 − r2kÞð9 − r2kÞ þ ε _u cosφk;

_φk ¼ 1þ αr2k − ε
_u
rk
sinφk;

üþ γ _uþ η2u ¼ N−1
XN
j

rj cosφj:

(6)

Parameters are α ¼ 0.1, ε ¼ 0.1, γ ¼ 0.01, η ¼ 1.5,
N ¼ 400. In the simulation, initially N=2 units were close
to the limit cycle with the amplitude ≈1 whereas the others
were close to the second limit cycle, with the amplitude ≈3.
The observed chimera state is shown in Fig. 4. Indeed, the
frequencies of the limit cycle oscillations are Ω1 ¼ 1.1 and
Ω2 ¼ 1.9. Since the resonant frequency of the circuit η lies
between them, Ω1 < η < Ω2, the phase shift in the global
coupling introduced by the harmonic circuit is attractive for
the state with Ω2 and repulsive for that with Ω1.
In summary, we have demonstrated numerically and

explained semi-quantitatively the emergence of chimera
states in ensembles of identical globally coupled oscilla-
tors. We have outlined a mechanism of dynamically
sustained bistability which results in symmetry-breaking
of the initially homogeneous system. Here, a remarkable
constructive role is played by collective chaos of non-
synchronized units: the irregular forcing from the cloud
counteracts the instability of the fully synchronous state,
thus stabilizing the cluster of synchronized n < N ele-
ments. We have also demonstrated that chimeralike states
are possible without this mechanism, if the individual
units are naturally bistable, like in setups described by
Eqs. (5,6). We stress that the chimeralike regimes here are
conceptually much simpler than in the model (1): the
asynchronous oscillators are not chaotic; moreover, here
the partition into synchronous and asynchronous states is
fully determined by initial conditions, while in Eq. (1) the
partition appears self-consistently. In this Letter we ana-
lyzed only ensembles of identical oscillators, as here the
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FIG. 4 (color online). Chimera state in the system of identical
Stuart-Landau-type oscillators in Eq. (6)). (a) Snapshot clearly
demonstrates one cluster and a group of asynchronous units.
Notice that for visibility, in the plot the amplitudes of all units are
substituted as rk → rk þ 0.01k. (b) Mean fields of two sub-
groups, X1 ¼ N−1 PN=2

j¼1 rk cosφj (bold black line) and X2 ¼
N−1 PN

j¼N=2þ1 rk cosφj (solid red line).
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effect is mostly striking. However, we expect that the main
features survive for small heterogeneity and/or noise; this
issue remains a subject for a future study.
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and Yu. Maistrenko. A. Y. thanks DFG (Grant No. PI-220/
17) for support.
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