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For time-reversal invariant graphs we prove the Bohigas-Giannoni-Schmit conjecture in its most general
form: For graphs that are mixing in the classical limit, all spectral correlation functions coincide with those
of the Gaussian orthogonal ensemble of random matrices. For open graphs, we derive the analogous
identities for all S-matrix correlation functions.
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Introduction.—The distribution of eigenvalues of a
classically chaotic Hamiltonian is one of the central themes
of quantum chaos. In 1984, Bohigas, Giannoni, and Schmit
(BGS) [1] formulated the celebrated “BGS conjecture” (see
also Refs. [2–4]): The spectral fluctuation properties of a
Hamiltonian quantum system that is classically chaotic
(mixing) coincide with those of the random-matrix ensem-
ble in the same symmetry class. Here, “spectral fluctuation
properties” refers to the totality of spectral fluctuation
measures. The symmetry class (orthogonal, unitary, or
symplectic) is determined [5] by the properties of the
system under time reversal and under rotation.
In addition to substantial numerical evidence [6], the

BGS conjecture has received analytical support along two
lines. (i) With the help of the semiclassical approximation
and periodic-orbit theory, the level-level correlator (“two-
point function”) for chaotic systems was shown to coincide
with that of random-matrix theory [7–10]. (ii) The two-
point function for quantum graphs [11] was shown [12,13]
to obey the BGS conjecture (even though graphs are not
strictly Hamiltonian systems). That result was extended to
the S-matrix correlation function for open graphs [14,15];
see also Ref. [16].
In this Letter, we prove the BGS conjecture for time-

reversal invariant graphs in its most general form.
Generalizing the approach of Refs. [12–15], we show that
for graphs with incommensurate bond lengths that are
mixing in the classical limit, all spectral correlation
functions coincide with those of the Gaussian orthogonal
ensemble (GOE) of random matrices. For open graphs, we
derive the analogous identities for all S-matrix correlation
functions.
Graphs.—We need to define the correlation functions for

levels and for S-matrix elements. To make the Letter self-
contained, we first collect the relevant definitions and
properties of graphs. A closed graph [11,17] is a system
of V vertices labeled α; β;… connected by B bonds labeled
ðαβÞ;… or simply by b ¼ 1; 2;…; B. We consider simple,
completely connected graphs (every pair of vertices is
connected by a single bond). Then B ¼ VðV − 1Þ=2. We

eventually take the limit B → ∞. The lengths Lb of the
bonds are assumed to be incommensurate (there is no set
fibg of positive, negative, or zero integers for whichP

bibLb vanishes). For B → ∞, the lengths are assumed
to remain bounded, Lmin ≤ Lb ≤ Lmax for all b. On each
bond b, the Schrödinger wave is written as sb1 expfikxbg þ
sb2 expf−ikxbg with the same real wave number k for all
bonds. The variable xb denotes the distance to one of the
two vertices connected by the bond. The set of coefficients
fsb1; sb2g is determined by boundary conditions defined on
each vertex α and written as OðαÞ ¼ σðαÞI ðαÞ. Here, I ðαÞ
(OðαÞ) is the vector of incoming (outgoing) wave ampli-
tudes on the bonds attached to vertex α, respectively. The
matrices σðαÞ have dimension V − 1 and are symmetric
(time-reversal invariance) and unitary (flux conservation).
Open graphs are defined by attaching to each of the vertices
labeled α ¼ 1; 2;…;Λ an additional bond (a “channel”)
labeled α that extends to infinity. For these vertices, the
boundary conditions OðαÞ ¼ ΓðαÞI ðαÞ involve the symmet-
ric and unitary boundary condition matrices ΓðαÞ of
dimension V given by

ΓðαÞ ¼
 
ρðαÞ τðαÞβ

τðαÞγ σðαÞγβ

!
: (1)

Here, ρðαÞ is the amplitude for backscattering into channel
α, and τðαÞβ is the amplitude for scattering from channel α to
vertex β or vice versa. The matrices σðαÞ in Eq. (1) are
subunitary. For B → ∞, the number Λ of channels is
held fixed.
To introduce the spectral determinant ξðkÞ for closed

graphs [11–13,17] and the scattering matrix (Smatrix) SðkÞ
for open graphs [11,14,15], we define in both cases the
block-diagonal symmetric “vertex scattering matrix” ΣðVÞ.
That matrix contains the matrices σðαÞ, α ¼ 1; 2;…; V in its
diagonal blocks. It has dimension VðV − 1Þ and is unitary
(subunitary) for closed (open) graphs, respectively. Since
VðV − 1Þ ¼ 2B, all relevant expressions can most easily be
written in matrix form by doubling the number of bonds.
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The bonds (αβ) are arranged in lexicographical order (so
that α < β). The resulting sequence is mapped onto the
sequence b ¼ 1;…; B. These bonds carry the labels (bþ).
To every such “directed bond” (αβ) with α < β the bond
(b−) is defined by (βα). The number of directed bonds (bd)
with d ¼ � is 2B. In directed-bond representation, the
vertex scattering matrix is denoted by ΣðBÞ (“bond scatter-
ing matrix”). That matrix is also symmetric and unitary
(subunitary, respectively).
Zeros of the spectral determinant ξðkÞ ¼

detð1 − expfikLgσd1ΣðBÞÞ define the bound states of a
closed graph while scattering on an open graph is described
by the symmetric unitary scattering matrix SαβðkÞ of
dimension Λ,

SαβðkÞ ¼ ρðαÞδαβ þ ðT W−1T TÞαβ: (2)

Here, W ¼ expf−ikLgσd1 − ΣðBÞ while T is a rectangular
matrix of dimension Λ × 2B containing the amplitudes
τðαÞβ in directed-bond representation as nonzero elements.
The symbol T denotes the transpose. The matrix expfikLg
with L ¼ fδbb0δdd0Lbg describes propagation on the
directed bonds, with the bond propagator expfikLbg
independent of the direction of the bond. The matrix σd1
is the first Pauli spin matrix in directional space multiplied
by the unit matrix in non-directed-bond space. That matrix
is needed to write ξðkÞ and SαβðkÞ in matrix form.
The probability distributions for levels and S-matrix

elements are specified in terms of average values and
correlation functions. All averages (indicated by angular
brackets) are taken over the wave number k. The average
level density is [11] hdRi ¼ ð1=πÞPbLb, and the average S
matrix is [11] hSαβi ¼ ρðαÞδαβ. The fluctuating part of the
level density is [12,13] ½1=ðiπÞ�ℑ½d=ðdkÞ� ln ξðkþÞ where
the plus sign indicates an infinitesimal positive imaginary
increment. The fluctuating part of the scattering matrix is
Sfl ¼ T W−1T T . In terms of these quantities, the (P, Q)
correlation functions for levels (closed graphs) and
S-matrix elements (open graphs) are

�YP
p¼1

d
dk

ln ξðkþ þ κpÞ
YQ
q¼1

d
dk

ln ξðk− − ~κqÞ
�
;

�YP
p¼1

Sflαpβpðkþ κpÞ
YQ
q¼1

Sfl�γqδqðk − ~κqÞ
�
: (3)

Here P and Q are positive integers. Interest centers on
fluctuations on the scale of the average level spacing
1=hdRi. Therefore, the incremental wave numbers κp
and ~κq obey κphdRi ≪ B and ~κqhdRi ≪ B.
Classical limit.—In the classical limit [18,19], the time

evolution of the probability density r, a vector with
component rbd ≥ 0 on the directed bond (bd), is defined
in terms of the discrete map r → Fr. Here, F is the Perron-
Frobenius (PF) operator [17], a nonsymmetric matrix with

elements F bd;b0d0 ¼ jðσd1ΣðBÞÞbd;b0d0 j2. All elements of
F are positive or zero. Moreover, F is bistochastic,P

b0d0F bd;b0d0 ¼ 1 ¼PbdF bd;b0d0 and, since the graphs
considered are completely connected, irreducible.
According to the Perron-Frobenius theorem, the irreducible
bistochastic matrix F possesses a nondegenerate maximal
eigenvalue λ1 ¼ 1 with associated right (left) eigenvector
u1 ¼ ð1; 1;…; 1ÞT [w1 ¼ ð1; 1;…; 1Þ], respectively. A
closed graph is mixing [17] if λ1 is the only eigenvalue
of F on the unit circle in the complex plane, with all other
eigenvalues located within or on the surface of a disc within
the unit circle. For an m-fold repeated map r → Fmr, we
then have r → u1ðw1jrÞ exponentially for m → ∞. For the
graph to remain mixing in the limit B → ∞, we require that
the minimum distance between the disc of eigenvalues λj
with j ≥ 2 and the unit circle remains finite, jλjj ≤ 1 − a
with a > 0. We postulate that same condition for open
graphs. Since Λ is held fixed, it seems plausible that for
B → ∞ that condition is met (perhaps with a different value
of a) for any open graph the closed counterpart of which is
mixing.
Averages. supersymmetry.—To average over k, the con-

tent of the angular brackets in every (P, Q) correlation
function is written as a suitable derivative of a generating
function GG (a superintegral) [13,15]. The average is
carried out using the incommensurability of the bond
lengths by replacing [12] the integration over k by an
integration over the independent phases ϕb ¼ kLb and
using the color-flavor transformation [20]. The P (Q)
factors in Eqs. (3) generate the retarded block (the
advanced block, respectively). The result is [13,15]
hGGi ¼

R
dðZ; ~ZÞ expf−Ag where the effective action is

AðZ; ~ZÞ ¼ −STLð1 − Z ~ZÞ þ 1

2
STLð1 − zþZz−ZτÞ

þ 1

2
STLð1 − zþSþ ~ZτS†−z− ~ZÞ: (4)

Here, STL stands for the combined operations (STrln)
where STr denotes the supertrace. Moreover, S� ¼
ðσd1ΣðBÞ − J �Þ while zþ ¼ expfiκLg and z− ¼
expfi~κLg in obvious notation. Differentiation of GG with
respect to the source terms J þ (J −) in the retarded
(advanced) blocks yields the (P, Q) correlation functions.
The source terms J � differ for open and for closed graphs
and are given in Refs. [12–15]. With s ¼ 1, 2, 3, 4 the
index for the supervariables, the matrices Z ( ~Z) have
elements Zpbds;qb0d0s0 ( ~Zqbds;pb0d0s0), dimension 8BP ×
8BQ (8BQ × 8BP, respectively), and are both diagonal
(∝ δbb0) in bond space. The integration measure is the flat
Berezinian. As in Ref. [13] Zτ is a transform of Z.
Saddle-point manifold.—Variation of AðZ; ~ZÞ with

respect to Z and ~Z yields two saddle-point equa-
tions [12,15]. The first one yields Zτ ¼ ~Z. The second is
met if (i) ½σd1ΣðBÞ; Z� ¼ 0 and if (ii) σd1ΣðBÞðσd1ΣðBÞÞ† ¼ 1.
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Condition (i) reduces the matrices Z, ~Z to the saddle-point
solution Y ¼ fδbb0δdd0Yps;qs0g, ~Y ¼ fδbb0δdd0 ~Yqs;ps0g. In
saddle-point approximation we have hGGisp ¼ R dðY; ~YÞ
ð…Þ expfSBG þ CCGg where the integration measure is
the flat Berezinian. The dots indicate the source terms. The
“symmetry-breaking term” is

SBG ¼ iπhdRi
�X

p

κpSTrs

�
1

1 − Y ~Y

�
pp

þ � � �
�
: (5)

The dots indicate a second term obtained from the first by
p → q, κp → ~κq, Y↔ ~Y. Condition (ii) is violated for open
graphs. The unitarity deficit of the matrices σðαÞ for α ¼
1;…;Λ and the ensuing unitarity deficit of the average S
matrix are accounted for by the “channel-coupling term”

CCG ¼ −
1

2

XΛ
α¼1

STrps ln

�
1þ TðαÞ Y ~Y

1 − Y ~Y

�
; (6)

where TðαÞ ¼ 1 − jhSααij2.
Massive modes.—The degrees of freedom in the super-

integral for hGGi that do not belong to the saddle-point
manifold are orthogonal to Y, ~Y and are taken into account
in Gaussian approximation [13]. We expand the effective
action (4) up to second order in Z, ~Z, dropping the source
terms and the incremental wave numbers κp, ~κq. We use
Z ¼ ~Zτ since fluctuations away from that condition are
strongly suppressed [13]. That yields two terms. One
contains ð1 − F Þbd;b0d0 sandwiched between Zpbds;qbds0

and ~Zqb0d0s;pb0d0s0 . It can be written as

1

2

XP
p¼1

XQ
q¼1

X2B
j≥2

STrsfzj;pqð1 − λjÞ~zj;qpg: (7)

The supermatrices zj;pq (~zj;qp) are obtained by multiplying
Zpbds;qbds0 ( ~Zqb0d0s;pb0d0s0 ) with the left (right) eigenvectors of
F , respectively, that belong to eigenvalue λj with j ≥ 2.
Since ℜλj < 1 for all j ≥ 2, Eq. (7) defines bona fide
Gaussian integrals with masses mj ¼ 1 − λj for j ≥ 2, both
for closed and for open graphs. The second term is the
supertrace of ½1 − ðσd1ΣðBÞÞbd;bdðσd1ΣðBÞÞ†bd0;bd0 � sandwiched
between Zpbds;qbd0s0 and ~Zqbd0s;pbds0 and summed over all b
and all d ≠ d0. The fluctuations due to that term are
negligible because the matrices σðαÞ are unitary or sub-
unitary so that for V ≫ 1 all elements of σðαÞ are generically
small (of order V−1=2). We focus attention on Eq. (7). We
expand the source terms and the remaining terms in the
effective action (4) in Taylor series in Zpbds;qbds0 and
~Zqb0d0s;pb0d0s0 , dropping all other terms. Using the right
and left eigenfunctions of F , we transform Zpbds;qbds0 →
zj;ps;qs0 ( ~Zqbds;pbds0 → zj;qs;ps0 , respectively). We carry out
the resulting Gaussian integrals. For closed graphs, the
resulting expressions are bounded from above by terms of
the form

C
B

YPþQ−1

l¼1

1

B

X2B
jl¼2

1

jmjl jkl
: (8)

Here, C is some positive constant and kl are non-negative
integers. For jmjj > a (all j), the term of Eq. (8) vanishes
for B → ∞. The factors B−1 in Eq. (8) are due to the source
terms for closed graphs. Detailed analysis shows that
reduction factors equivalent to B−1 arise also for open
graphs because here the source terms are matrices in
directed-bond space that have a single nonvanishing
element only. Hence, the expressions analogous to
Eq. (8) for open graphs also vanish.
We conclude that both for closed and for open graphs,

the contribution of massive modes is negligible for B → ∞.
Therefore, all (P, Q) correlation functions are obtained by
differentiating hGGisp with respect to the source terms.
Random-matrix approach.—We turn to the GOE [21]

and generalize the supersymmetry approach of
Refs. [22,23] to the general (P, Q) correlation function.
The real matrix elements Hμν of the symmetric N-
dimensional GOE Hamiltonian H are Gaussian-distributed
random variables with zero mean values and second
moments hHμνHμ0ν0 i ¼ ðλ2=NÞðδμμ0δνν0 þ δμν0δνμ0 Þ. The
indices run from 1 to N while λ ¼ Nd=π where d is the
mean level spacing at the center of the GOE spectrum.
The angular brackets denote the ensemble average. With E
the energy, the (P, Q) level correlation function for the
closed system is defined as

�YP
p¼1

TrðEþ þ εp −HÞ−1
YQ
q¼1

TrðE− − ~εq −HÞ−1
�
: (9)

The plus (minus) sign indicates an infinitesimal positive
(negative) imaginary increment. The open system is
obtained [23] by coupling Λ channels a; b;… to the
states labeled μ by real channel-coupling matrix elements
Waμ ¼ Wμa. These obey

P
μWaμWμb ¼ Nv2aδab. The

scattering matrix is Sab ¼ δab − 2πi½WðE −Hþ
iπW†WÞ−1W†�ab. The S-matrix correlation function is
defined in analogy to the second term of Eq. (3),
with the replacements Sflαpβpðkþ κpÞ → SapbpðEþ εpÞ,
Sfl �γqδq

ðk − ~κqÞ → S�cqdqðE − ~εqÞ. In contrast to Eq. (3) the
correlator now also contains the average S-matrix elements.
That must be borne in mind when we later compare the
source terms. The incremental energies obey εp, ~εq ≪ dN.
The contents of the angular brackets in the (P, Q)

correlation functions are written as suitable derivatives
[23,24] with respect to source terms J � of a generating
function GR (a superintegral). The ensemble average is
calculated by straightforward generalization of the steps in
Ref. [23]. The ensemble average over H is followed by
the Hubbard-Stratonovich transformation and by the
saddle-point approximation. At the center of the GOE
spectrum, the saddle-point manifold is parametrized as
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σR ¼ −iT−1
0 LT0. In retarded-advanced block notation, L is

equal to the third Pauli spin matrix whereas T0 is given by

T0 ¼
� ð1þ t12t21Þ1=2 it12

−it21 ð1þ t21t12Þ1=2
�
: (10)

The matrix t12 (t21) has elements ðt12Þps;qs0 [ðt21Þqs;ps0 ,
respectively]. The elements of (t12, t21) span the saddle-
point manifold for the (P, Q) correlation function. That
gives hGRisp ¼ R dμðtÞð…Þ expfSBR þ CCRg where the
dots indicate the source terms. We suppress the definition
of the invariant measure dμðtÞ. In analogy to Eqs. (5) and
(6) the symmetry-breaking term is

SBR ¼ iπ
d

�X
p

εpSTrsððt12t21ÞppÞ þ � � �
�
; (11)

where the dots indicate a second term obtained from the first
by the replacements

P
p →

P
q, εp→ ~εq, ðt12t21Þpp →

ðt21t12Þqq. The channel-coupling term (present only for
the open system) is

CCR ¼ −
1

2

X
c

STrps lnð1þ TðcÞt12t21Þ: (12)

The transmission coefficient TðcÞ in channel c is defined
as TðcÞ ¼ 1 − jhSccij2.
The contribution of the massive modes to the (P, Q)

correlation functions for the GOE can be shown to vanish
with some inverse power of N as N → ∞. Therefore, these
functions are obtained by differentiation of hGRisp with
respect to the sources.
Equivalence.—For B → ∞ and N → ∞, massive modes

contribute neither to hGGi nor to hGRi. The identity of all
(P, Q) correlation functions of both approaches is, there-
fore, proved by showing that hGGisp ¼ hGRisp. We equate
εp=d with κphdRi, ~εq=d with ~κqhdRi, and TðaÞ with TðαÞ for
both a and α ¼ 1;…;Λ. We define

τ ¼ −it12
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t21t12
p ; ~τ ¼ it21

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t12t21

p : (13)

With these substitutions and upon the identification τ ¼ Y,
~τ ¼ ~Y, the terms SBR and CCR in Eqs. (11) and (12)
become equal to SBG and CCG in Eqs. (5) and (6),
respectively. For the source terms (not given here) the
identity is easily proved for the closed systems. For the
open systems, the identity is established on the level of
the transmission coefficients as the coupling matrix ele-
ments Waμ of the GOE approach bear no direct analogy to
the elements of the matrix ΣðBÞ for graphs.
With the substitutions (13) the saddle-point manifold

σR ¼ −iT−1
0 LT0 takes the form

σR ¼ −i
�
1 τ

~τ 1

��
1 0

0 −1

��
1 τ

~τ 1

�−1
: (14)

For this parametrization of σR, the integration measure is
[20] the flat Berezinian

Q
pqdðτpq; ~τqpÞ, as is the case for

(Y, ~Y). Complete identity of the two saddle-point manifolds
is then guaranteed if for each set of block indices (p, q)
there exists a one-to-one map of the two sets of matrices
(Ypq, ~Yqp) and (τpq, ~τqp) onto each other. That follows from
the facts that all these supermatrices have dimension four,
possess the same symmetries including a compact para-
metrization of the fermion-fermion block, and together
parametrize the same supermanifold (the extension of
Efetov’s coset space [22] from the two-point function to
the (P, Q) correlation function). It then follows that all
(P, Q) correlation functions for time-reversal invariant
graphs and for the GOE pairwise coincide, both for closed
and for open systems.
Discussion.—We have proved the BGS conjecture for

quantum graphs in its most general form both for closed
and for open graphs in the limit of infinite bond number B.
Our result shows how universal symmetries dominate in
that limit. The proof involves a number of assumptions.
(i) We have limited ourselves to graphs that are time-
reversal invariant (orthogonal symmetry). We expect that
the extension to unitary symmetry will be completely
straightforward. (ii) Graphs must have incommensurate
bond lengths. That assumption is essential as it allows the
average over the wave number k to be replaced by averages
over the phases ϕb ¼ kLb and enables the use of the color-
flavor transformation. (iii) Graphs are completely con-
nected. The removal of a finite number of bonds probably
does not affect our results for B → ∞. Otherwise, we
expect qualitative changes that might be caused, for
instance, by Anderson localization. The relation between
the connectivity of the graph and the spectrum of the PF
operator poses an important open problem. (iv) Graphs are
classically mixing. The ensuing condition on the spectrum
of the PF operator (existence of a gap separating the
eigenvalue þ1 from the rest of the spectrum) guarantees
that the contribution of the massive modes to all (P, Q)
correlation functions vanishes for closed graphs and analo-
gously for open graphs. In Refs. [12,13,25–27], it is shown
that weaker conditions on the spectrum of the PF operator
suffice to guarantee certain fluctuation properties of the
GOE type. It is not clear how such conditions relate to
conditions on the time evolution of the classical probability
density in directed-bond space and, thus, to classical
chaos.
In Refs. [14,15] the complete set of (P, Q) S-matrix

correlation functions for graphs was calculated explicitly in
the Ericson regime, i.e., for

P
αT

ðαÞ ≫ 1. It was conjec-
tured that these results are generic. The present Letter
confirms that conjecture. Beyond that regime, our results
are only implicit. We prove the identity of all (P, Q)
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correlation functions for graphs and for the GOE without
being able to work out these functions explicitly (except
for P ¼ 1 ¼ Q).
In Refs. [28–30], a field-theoretical approach to quantum

chaos based upon the PF operator and on the nonlinear
sigma model was advocated. Our work shows that the PF
operator does indeed determine essential features of the
problem. Knowledge of that operator is not sufficient,
however. As shown below Eq. (7), the masses of the modes
Zpbds;qbd0s0 with d ≠ d0 are determined by quantum ampli-
tudes that go beyond the classical PF operator.
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