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We report the realization of a coherent perfect absorber, using a pair of passive resonators coupled to a
microwave transmission line in the background, which can completely absorb light in its parity-time (PT-)
symmetric phase but not in its broken phase. Instead of balancing material gain and loss, we exploit the
incident waves in the open system as an effective gain so that ideal PT symmetry can be established by
using only passive materials. Such a route will be effective to construct PT-symmetric metamaterials and
also tunable PT-symmetric optical elements in general. It also provides a flexible platform for studying
exceptional-point physics with both electric and magnetic responses.
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Parity-time (PT) symmetric optical systems have
recently attracted tremendous attention for studying
extraordinary physics of non-Hermitian Hamiltonians. It
begins from a pioneering work in showing a PT-symmetric
Hamiltonian has an entirely real-valued energy spectrum
below a phase transition point [1,2]. In optics, a PT-
symmetric potential is a complex refractive index profile
satisfying nðxÞ ¼ n�ð−xÞ, which for example, can be
realized by a pair of coupled waveguides with balanced
gain and loss [3–8]. A range of associated extraordinary
phenomena have since been proposed, including novel
beam refraction [4], power oscillation [5], loss-induced
transparency [7], nonreciprocal Bloch oscillations [9], laser
absorber [10,11], unidirectional invisibility [12–14] and
various extraordinary nonlinear effects [15–17].
Due to the stringent requirement of balanced gain and

loss in achieving an ideal PT symmetry, only a few of the
above proposals have been realized experimentally
[7,8,13]. As a remedy, we can resort to the nonideal PT
symmetry in a passive system through an additional gauge
transformation of the states or a mathematical biasing in the
diagonal terms of the Hamiltonian [7,18]. However, an
ideal PT-symmetric Hamiltonian is still preferred for its
ability to reveal directly and prominently the various
extraordinary phenomena associated with a PT phase
transition or exceptional point.
Interestingly, a recent theoretical study suggested that an

ideal PT symmetry can actually be established by using
metamaterials with both electric and magnetic responses.
Simulations have confirmed the PT-symmetric nature of
such metamaterials [19]. Based on that work, here we
implement such an idea by using electric and magnetic
resonators coupled with a microwave transmission line in
an open system. Such a system allows us to demonstrate
ideal PT symmetry by using only passive materials while

the “matching” potential is realized by tuning the geometric
parameters and the lumped resistance of the resonators. In
this way, we are not only using an open system to probe the
physical properties of a PT-symmetric potential, but also
employing the incident waves in an open system as an
effective gain. This effective gain, coming from the
environment instead of materials, depends on the target
observable optical phenomenon, which affects the way to
formulate the effective Hamiltonian. In the experimental
demonstration in this Letter, we balance the scattering loss
and the dissipative loss of the resonators without requiring
gain to obtain coherent perfect absorption in the PT-
symmetric phase. A coherent perfect absorber has shown
great promise for interferometric applications in optical
circuits [10,11,20]. A PT phase transition will further add
configurational tunability and may allow us to design future
modulators and switches with physics enriched by phase
transition and exceptional-point physics.
Figure 1 shows our coupled-resonators system to exhibit

an ideal PT symmetry. It consists of a “bright” resonator,
the vertical copper wire in Fig. 1(a), and a “dark” resonator,
the pair of split rings in Fig. 1(c). The “bright” resonator
with electric dipole moment p can be easily excited by
incoming waves (s1;in and s2;in from the two ports labeled as
1 and 2 in the figure), while the “dark” resonator, the pair of
split-rings being modeled as a magnetic dipole moment m,
is isolated from the transmission line (in the combined
system, Fig. 1(e)) and can only be excited by the near-field
from the bright resonator through a coupling parameter g.
The two modes satisfy the coupled mode equations using a
Lorentz model (with time dependence expð−iωtÞ)

ð−ω2 − 2iωðΓa þ faÞ þω2
0Þp ¼ 2faðs1;in þ s2;in − iωgmÞ;

ð−ω2 − 2iωΓb þω2
0Þm ¼ 2iωfbgp; (1)
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and generate outgoing waves s1;out and s2;out at the two
ports governed by

s1;in − s2;out ¼ s2;in − s1;out ¼ −iωp; (2)

where fa, fb are the resonance strengths and Γa, Γb are the
dissipative losses of the two individual resonators. The
scattering loss for the bright resonator is also given by
γa ¼ fa while the scattering loss for the dark resonator is
approximately zero. The dipole moments and the resonance
strengths are normalized with respect to the transmission
line environment [21]. The resonating frequencies for both
resonators are tuned to the same ω0. Such a model and
similar structures coupling bright and dark resonators are
previously used for obtaining electromagnetic induced
transparency and/or absorption [23–28] by working in
the strong coupling regime and in the limit where the loss
for the dark resonator is much smaller than the bright
one: Γb ≪ Γa þ γa.
In contrast, here we work in the regime of intermediate

coupling. Moreover, losses from the two resonators are
specially tuned to have comparable sizes (as we shall see)
to obtain coherent perfect absorption (CPA) and to display

the corresponding exceptional-point physics of PT sym-
metry. CPA is a particular set of solutions such that the
incoming waves from the two ports are completely
absorbed [10,11,20]. In this case, by putting zero outgoing
waves: s1;out ¼ s2;out ¼ 0 into Eqs. (1) and (2) with a
further approximation of the Lorentz model by
ω2
0 − ω2 ≈ 2ωðω0 − ωÞ, we obtain an equivalent eigenfre-

quency problem in solving the CPA states:

H

�
p=

ffiffiffiffiffi
fa

p
m=

ffiffiffiffiffi
fb

p
�

¼ ω

�
p=

ffiffiffiffiffi
fa

p
m=

ffiffiffiffiffi
fb

p
�
; (3)

where the effective Hamiltonian is

H ¼
�
ω0 − iðΓa − γaÞ iκ

−iκ ω0 − iΓb

�
; (4)

and the coupling strength is defined by κ ¼ g
ffiffiffiffiffi
fa

p ffiffiffiffiffi
fb

p
. We

have established a Hamiltonian different from the one
solving normal modes (or lasing, without incident waves)
since CPA occurs in an open system with incident waves.
By solving detðH − ωIÞ ¼ 0, we can obtain the eigenfre-
quencies ω of H as

ω ¼ ω0 þ i
γa − Γa − Γb

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 −

�
γa − Γa þ Γb

2

�
2

s

(5)

which needs to be real in order to have CPA occur.
For the case γa − Γa ¼ Γb, H is called an ideal

PT-symmetric Hamiltonian. Both the diagonal and off-
diagonal terms ofH form conjugate pairs, as a signature of
a two-state PT-symmetric Hamiltonian [2,29]. It requires a
positive γa − Γa, the difference between scattering and
dissipative loss of the bright resonator. From the dynamic
equations, we can see that this term is in fact renormalized
from the original gain −γa − Γa due to the presence of
incident waves. The incident waves thus provide the
additional power to turn this term to be positive.
Therefore, it can be regarded as an effective gain (in the
current context of CPA) but now it does not necessarily
come from the actual material gain as in previous studies
[7,8]. It paves a way to demonstrate ideal PT symmetry in a
passive optical system in this work. With a PT-symmetric
Hamiltonian, the phase transition can then be observed by
varying the coupling κ across a critical value of κc ¼ Γb.
The eigenfrequencies of PT-symmetric H have two real
values in the PT-symmetric phase κ > Γb, giving CPA at

two real frequencies ω1;2 ¼ ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − Γ2

b

q
, and become a

complex conjugate pair in the broken phase κ < Γb,
suggesting perfect absorption cannot occur in this phase.
For the more general case γa − Γa ≠ Γb, H is called a
nonideal PT-symmetric Hamiltonian. All the eigenvalues
are biased by a purely imaginary number (from Eq. (5)) so
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FIG. 1 (color online). Left column: simulated (red symbols) and
fitted (solid line) total linewidth of bright (a) and dark resonator
(c) as a function of lumped resistance. (e) Coupling strength as a
function of separation between two resonators. Right column:
simulated (symbols) and analytical (lines) transmission or re-
flection responses of bright resonator (b), dark resonator (d), and
coupled structure (f) corresponding to the left column, with
structural parameters given in Ref. [21].
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that the eigenfrequencies cannot be real for κ > κc. For
κ < κc, eigenvalues split in the imaginary part and one of
them will cross the real frequency axis at κ2 ¼ ðγa − ΓaÞΓb
to give CPA. Interestingly, although the nonideal case
cannot have the whole branch or phase for CPA, CPA
occurs at one of the imaginary branch at a fixed κ (at
frequency ω0). It is worth mentioning that this solution
cannot be found in the previous nonideal PT-symmetric
system without gain [8] except for the case κ ¼ 0.
In the following, we focus on the experimental realiza-

tion of CPA with phase transition in passive coupled-
resonator system. The detailed configurations are described
in the Supplementary Material [21]. According to the
theoretical proposal, the loss rates of the bright and dark
resonators as well as the coupling between them need to be
carefully balanced in order to achieve CPA with PT phase
transition. We first investigate the bright and the dark
resonators separately to extract the parameters appearing in
coupled mode equations. Lumped resistance R1=R2 are
used to control the loss rates of the bright or dark resonator.
Figures 1(a) and 1(c) present the relationship between the
value of R1=R2 and the resonating linewidth of the bright/
dark resonator, respectively. As is shown in the insets, the
bright resonator is excited by the 50 Ω microstrip, and the
dark resonator is excited by a 0.2 mm width microstrip in
the center (The separation between SRR and the microstrip
is 0.4 mm). The red dots are the simulated half width at
half maximum of the absorption line, which fit the linear
formula quite well. As examples, simulated spectra (sym-
bols) of the amplitudes of reflection coefficient with the
values of R1 ¼ 1, 24, 50 Ω and R2 ¼ 1, 25, 50 Ω are
plotted in Figs. 1(b) and 1(d), respectively. As a compari-
son, the theoretical calculations with fitted parameters are
also given [the lines in Figs. 1(b) and 1(d)]. Both resonators
are resonantly excited around the frequency of
f0 ¼ 3.75 GHz, and the calculated results are in good
agreement with the simulations near f0. The small devia-
tions between them in the nonresonance frequency region
are mainly due to the present of the high-order resonating
mode of the branch and the SRRs. It is known that the total
linewidth could be divided into two parts: the scattering
loss γa;b and the dissipative loss Γa;b. For the present
design, the part of dissipative loss is totally from the
lumped resistor. Therefore, the scattering loss γa;b is equal
to the linewidth at R1;2 ¼ 0, i.e. the intercept of the fitted
linear formula. One can obtained that γa ≈ 0.38 GHz,
γb ≈ 0.18 GHz, Γa ≈ 0.016R1, and Γb ≈ 0.008R2. It should
be noted that γb here can only represent the coupling
between the SRR and the 0.2 mm vertical microstrip. For
the coupled structure shown in Fig. 1(e), the scattering loss
of the SRRs becomes negligible due to the large separation
between the SRRs and the microstrip.
The coupling strength κ between the two resonators is

determined by the separation s between the branch and the
SRR, and it can be obtained from the spectral response of

the coupled structure for Γb ¼ 0, i.e. R2 ¼ 0. The relation-
ship between κ and s is given in Fig. 1(e). The red dots are
the half of the frequency separation of two poles in
simulated transmission or reflection spectra (R1 ¼ 24 Ω,
R2 ¼ 0), which can fit a decaying exponential function of
κ ¼ 1.2 expð−s=0.66Þ quite well. Figure 1(f) exhibits the
simulated spectra (symbols) of the transmission/reflection
with the values of s ¼ 0.2, 1.0 mm, as well as the
theoretical calculations with fitted parameters (lines),
which shows good consistency with each other.
Based on the studies above, one can obtain the para-

metric evolution of the coupled structure for CPA (Fig. 2).
For fixed R1 ¼ 1 Ω, ideal PT-symmetric Hamiltonian can
be achieved by choosing R2 ¼ 45.5 Ω, with γa − Γa ¼ Γb
satisfied. It is denoted by the black and blue vertical lines
representing the CPA with ideal PT symmetry and the PT-
broken phase, respectively. The threshold of coupling is at
s ¼ 0.79 mm. The splitting of the real/imaginary (black
solid / red open circles) part of the eigenfrequency (relative
to the original resonating frequencyω0) of PT-symmetricH
with varying s is shown in the inset, as a typical ideal PT
phase transition.
The structure with ideal PT symmetry is then excited by

incident waves of ðs1þ; s2þÞ ¼ ð1; 1Þ, namely in-phase
excitation with the same intensity from the two opposite

(a)

(b)

(c)

FIG. 2 (color online). (a) Phase map of the PT-symmetric
Hamiltonian in passive structure. The vertical black solid line
corresponds to the ideal PT symmetry with two split real
eigenfrequencies, and the vertical blue dash line corresponds
to the PT-broken phase. Curved solid green line shows the real
eigenfrequency condition (to have CPA) at a nonideal PT
symmetry. The black circles, blue open circles, and red squares
denote the parameter settings of the experimental samples, with
which CPA for the ideal PT symmetry, no CPA for the sponta-
neous PT-symmetry breaking, and CPA for the nonideal PT
symmetry are, respectively, verified. Inset gives the eigenfre-
quencies (with respect to the original resonating frequency in
GHz: real or imaginary part shown in black solid or red open
circles) as a function of separation (coupling strength). The
dependence of the eigenfrequencies of a nonideal PT-symmetric
Hamiltonian at R2 ¼ 10 Ω against the coupling separation s is
given in (b) real part and (c) the imaginary part. A pure real
eigenfrequency to have CPA can be found at a particular
separation.
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directions. The magnitude of the coherent absorption
equals to 1−jtþ rj2, where t=r is the one-side trans-
mission/reflection coefficient with respect to the mirror
plane of the sample. In Fig. 3(a), we depict the measured
coherent absorptions of a series of samples with different s.
It is clearly seen that when s is smaller than 0.8 mm, there
exist two CPA frequencies (coherent absorption coefficient
being nearly 1) corresponding to the two real eigenfre-
quencies of PT-symmetricH; when s is larger than 0.8 mm,
PT phase transition occurs, and no CPA frequency can be
found. In Fig. 3(b), the analytical outgoing jtþ rj2 spectra
(with R1 ¼ 1, R2 ¼ 47 Ω and fitted parameters) versus
frequency and separation s are also plotted. One can find
that the simulated (red solid circles) and measured (black
open circles) CPA frequencies are in good agreement with
the analytical results. These results confirm the theoretical
model proposed above and demonstrate the ideal PT-
symmetry behaviors in a passive system. Note that the
coherent absorption of the structure were not measured
directly in the experiments. Instead, we measured the one-
side transmission and reflection spectra, and then obtained
the coherent absorption. Moreover, the absorption effi-
ciency at the two peaks in the PT-symmetric phase can be
tuned by controlling the relative phase between the two
inputs, with frequency positions fairly unchanged. (see
Ref. [21] for additional simulated and measured spectra).

CPA can also occur with nonideal PT-symmetricH with
specific loss-coupling relation, which is indicated by the
green curve in Fig. 2. It suggests that a real eigenfrequency
can also be achieved in nonideal PT-symmetric system.
Here we construct nonideal PT-symmetric system with the
resistor R2, which is either more than or less than 45.5 Ω,
and seek the CPA conditions (corresponding to real
eigenvalue) by scanning the coupling strength (equivalently
the separation s). For the case of ideal PT-symmetric H,
CPA can be observed with any separation smaller the
threshold value; however, for nonideal PT-symmetric H,
CPA can only be observed at the center frequency of
f0 ¼ 3.75 GHz, with a particular separation. The exper-
imental CPA conditions of nonideal PT-symmetric system
are presented in Fig. 2(a) with red squares. In Fig. 4,
simulations and measurements show that the particular
separations for the samples with R2 ¼ 5, 10, and 100 Ω are
near 1.6, 1.4, 0.5 mm, respectively. The CPA is charac-
terized by a large dip at the center frequency of f0 ¼
3.75 GHz (red solid line). Smaller or larger of the sepa-
ration makes CPA disappear (blue dashed and black dotted
lines). The measurements show good agreement with
simulations, and verify the theoretical predictions.
In summary, we have experimentally demonstrated an

ideal PT symmetry by balancing scattering and dissipative
losses in a coupled-resonator system. Coherent perfect
absorption is achieved with purely passive materials, while
the associated PT phase transition is clearly observed. Such
investigations will be useful for designing future tunable
optical components benefiting from PT phase transition
and exceptional-point physics. It is also expected the same
route is immediately useful to construct a PT-symmetric
microwave metamaterial with possible extension to higher
frequencies.
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FIG. 3 (color online). Ideal PT symmetry. (a) Measured coher-
ent absorption as a function of s. (b) Analytical outgoing spectra
jtþ rj2 with varying s. The red solid and black open circles are
the simulated and measured CPA frequencies, respectively.

FIG. 4 (color online). Simulated and measured outgoing spectra
of nonideal PT-symmetric system for three samples with R2 ¼ 5,
10, and 100 Ω. The dips of the red curves indicate the CPA
frequency of 3.75 GHz for their critical couplings; the blue and
black curves show that CPA cannot be observed when the
coupling strength is more or less than the critical coupling.
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