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Structural correlations in disordered media are known to affect significantly the propagation of waves.
In this Letter, we theoretically investigate the transport and localization of light in 2D photonic structures
with short-range correlated disorder. The problem is tackled semianalytically using the Baus-Colot model
for the structure factor of correlated media and a modified independent scattering approximation. We find
that short-range correlations make it possible to easily tune the transport mean free path by more than
a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed
by numerical finite-difference time-domain calculations. This study therefore shows that disorder
engineering can offer fine control over light transport and localization in planar geometries, which
may open new opportunities in both fundamental and applied photonics research.
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Multiple light scattering in disordered media plays a
paramount role in the study of complex natural systems
(e.g., biological tissues, porous materials, planetary atmos-
pheres) [1] and wave phenomena (e.g., light localization,
anomalous diffusion) [2–4]. In recent years there has been
a growing interest in the use of photonic structures with
controlled disorder, in particular within the context of
mesoscopic transport effects [5–8], cavity quantum electro-
dynamics [9], photon management for energy efficiency
[10–13], and even lab-on-chip spectroscopy [14]. Indeed
structural correlations in the positions of scatterers are
known to affect light propagation. Previous studies have
shown that short-range correlations can either diminish or
enhance the scattering strength of a disordered system
[15–18] and lead to a modulation of the density of optical
states [19], even in biological systems [20]. Such a modu-
lation can be so large that a complete photonic band gap is
expected to form, even without long-range periodicity
[19,21–24]. The emerging concept of “disorder engineering”
to manipulate light transport in random media is, however,
still in its infancy and little is known so far on the occurrence
of localization phenomena in correlated systems.
In this Letter, we theoretically investigate the transport of

light and the occurrence of localization in two-dimensional
(2D) photonic structures possessing short-range correlated
disorder. A semianalytical model describing the wave propa-
gation in correlated-disordered systems allows us to inves-
tigate how key quantities, namely, the transport mean free
path, the scattering anisotropy factor, and the localization
length, evolve with the degree of correlation. In particular,
short-range correlations are found to allow for the tuning
of the localization length over several orders of magnitude
and thus, make it possible to go from a quasiextended to

a strongly localized regime very easily, in sharp contrast with
three-dimensional systems, where the localized regime is
very difficult to reach [8,25]. This trend is confirmed by
numerical simulations.
The 2D photonic structures consist of disordered patterns

of circular air holes (ni ¼ 1) with filling fraction f ¼ 20%
and diameter o ¼ 0.23a, where a is the period of
a hexagonal lattice of holes with the same f, in a medium
with refractive index no ¼ 3.5 [10,19]. The short-range
correlation in the disorder is controlled by imposing
a minimum distance dmin between the centers of the holes.
This has been obtained [10,26] by generating a disordered
packing of hard disks with diameter dmin at a packing
fraction p, using a freely available code [27] based on
the Lubachevsky-Stillinger algorithm [28]. The centers of
these disks have been used to generate the point patterns
shown in Fig. 1(a) for three photonic structures with
p ¼ 30%, 50%, 70%. The degree of local order evidently
increases with increasing p, imposing an average distance
between adjacent holes.
Fundamentally, the existence of a typical distance between

neighboring scatterers implies a certain phase relation which,
depending on direction and wavelength of scattered waves in
the medium, gives rise to either constructive or destructive
interference between them. Following this line of reasoning,
structural correlations can be seen as a modification of the
angular scattering pattern of the individual scatterers, and be
taken into account (to a first approximation) by correcting the
expression of the single scatterer differential scattering cross
section dσ=dθ by the static structure factor SðqÞ as [15,16]

dσ⋆
dθ

¼ dσ
dθ

SðqÞ; (1)
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where q ¼ ð4π=λeÞ sinðθ=2Þ, θ is the scattering angle, and
λe ¼ λ=ne is the wavelength in a medium with effective
refractive index ne, which in our case equals 2.92 according
to the two-dimensional Maxwell Garnett mixing rule [29,30].
Formally, the structure factor SðqÞ is defined as

SðqÞ ¼ 1

N

�XN
i;j¼1

e−iq·ðri−rjÞ
�
; (2)

where N is the number of scatterers, ri;j the position of the
scatterers labeled i and j, and h� � �i denotes ensemble
average. In previous works on 2D photonic structures with
short-range correlated disorder (statistically isotropic), SðqÞ
was calculated numerically from the point patterns generated
by a sphere packing protocol [19]. This approach is very time
consuming and not suited to an exhaustive study of the effect
of structural correlations on transport. An analytical expres-
sion of the structure factor of a correlated-disordered medium
is often retrieved by making use of the well-known Percus-
Yevick model which, unfortunately, applies exclusively to
systems with odd dimensionality (d ¼ 1; 3;…) [31]. In
contrast, we adopt a semianalytical approach, based on
the Baus-Colot (BC) model for the structure factor of
a fluid of hard disks [32], that is well-suited to systems of
dimensionality d ¼ 2. In Fig. 1(b), we compare the structure
factor SðqdminÞ evaluated numerically using Eq. (2) for the
2D photonic structures generated above with those obtained
from the BC model, using p as the only input parameter.
A very good agreement is observed, even for high p. As the
degree of correlation is increased, the structure factor

exhibits stronger oscillations, which indicate the emergence
of a typical distance between neighboring scatterers.
By making use of Eq. (1), we calculate the angularly and

spectrally resolved “effective” differential scattering cross
section dσ⋆=dθ of holes in TE polarization (electric field
in the plane) as a function of the degree of short-range
correlation [Fig. 2(a)]. The single scatterer differential
scattering cross section dσ=dθ was calculated from Mie
theory for circular cylinders [33]. As p increments, dσ⋆=dθ
exhibits increasingly sharper features in frequency and
angle due to the oscillations of SðqÞ, giving considerably
different weights to the forward and backward scattering.
Clearly, for low p the scattering is primarily forward, whereas
for strongly correlated disorder the forward scattering is
inhibited in a broad range of frequencies.
This redistribution of the scattered light is at the core of

the modification of the transport properties in correlated
disorder. To illustrate this point, we calculate the transport
mean free path lt in the correlated system [34]

lt ¼
�
ρ

Z
π

0

dσ⋆
dθ

ð1 − cos θÞdθ
�−1

; (3)

where ρ is the number density of scatterers, and the
scattering anisotropy factor g

g ¼ 1

σ⋆
Z

π

0

dσ⋆
dθ

cos θdθ; (4)

which indicates the degree of anisotropy of the effective
single scattering event. The results are shown in Figs. 2(b)
and (c) as a function of p. First, as expected, correlations
yield spectral ranges with either longer or shorter transport
mean free paths, the latter occurring in particular when
λe ¼ 2ndavg, with n ¼ 1; 2;… (Bragg-like scattering) and
davg is the average distance between nearest-neighbor
scatterers. Variations larger than a factor of 2 are observed.
Second, the anisotropy factor g for highly correlated
structures becomes negative on broad frequency ranges,
reaching values as low as −0.9, indicating a strong back-
ward scattering [17]. Interestingly, this leads to a peculiar
light transport in which the scattering mean free path ls ¼
ltð1 − gÞ is longer than the transport mean free path lt.
This scattering property is rare in systems of isolated
particles, and it has been observed only in specific cases [35].
Gaining control over the transport mean free path provides

an unprecedented control on light localization phenomena.
In this respect, two-dimensional structures are very peculiar
since the dependence of the localization length on the
transport mean free path is critical, so that a small change
in lt should yield dramatic changes of ξ. The localization
length is indeed predicted to be given by [3]

ξ ≈ lt exp

�
π2

lt

λe

�
: (5)

(b)

(a)

FIG. 1 (color online). Structural correlations in 2D disordered
media. (a) Disordered photonic structures with filling fraction
f ¼ 20% and different degrees of correlation (p ¼ 30%, 50%,
70%). (b) Structure factors SðqdminÞ of the correlated patterns,
evaluated numerically with Eq. (2) (hollow dots) and semi-
analytically using the Baus-Colot model (solid lines).
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We therefore expect that a modification of the degree of
correlation p could lead to modifications of the localization
length ξ over orders of magnitude, making it possible to go
from a quasiextended to a localized regime easily in finite-
size systems. In Fig. 2(d), the localization length ξ predicted
semianalytically is shown in semi-log scale. The strong
modulation of ξ as a function of frequencies is striking.
In the 2D correlated system, one goes from a regime in
which ξ is much larger than any realistic system (low
frequencies) to a regime in which the two can be comparable

(at a=λ ≈ 0.2). Although we do not expect Eq. (5) to be
quantitatively accurate [36], this huge photonic dispersion
(variation of orders of magnitude within Δω=ω0 ¼ 0.2),
suggests that we could truly observe a dramatic variation
of ξ in real systems.
To test these predictions, we investigated the transport

properties of the 2D correlated systems through numerical
2D finite-difference time-domain (FDTD) simulations, using
a freely available software package [37]. We considered
finite systems with the same structural parameters and open
boundaries [squares of side L ¼ 36a surrounded by per-
fectly matched layers, see Fig. 3(a)]. The system was excited
from a set of 225 randomly distributed dipole sources having
an impulse with bandwidth of 0.02 λ=a. Since the system is
open, the energy density is expected to decay exponentially
at long times as UðtÞ ∝ exp½−γt�, where γ is the decay
constant. A change in the degree of correlation p should
yield a change in lt and thus in the average time needed
for light to escape from the system. This is illustrated in
Fig. 3(b), where, at a frequency a=λ ¼ 0.21, increasing
p yields a diminution of γ. The multiexponential decay at
shorter times is due to the excitation of several modes in the
structure which couple to the environment with different
efficiency. The decay constants γ were therefore obtained
from exponential fits at sufficiently long times for various
frequencies and degrees of correlation p, and an average was
performed over six disorder realizations. Note that a proper
statistical analysis of γ would require more disorder real-
izations, which would be extremely time consuming. We
have observed, however, that six disorder realizations are
sufficient to show the increase of the decay constant as the
degree of correlation increases, as reported below [Fig. 3(d)].
In Fig. 3(c), we show the average decay constants of the

photonic structures with p ¼ 30%, 50% and 70% as a
function of the pulse excitation frequency, estimated from
the numerical FDTD simulations. The effect of correlations
on light transport is particularly clear. At frequencies close
to a=λ ≈ 0.2, γ is strongly diminished due to a reduction of
lt and at lower frequencies (a=λ < 0.17) one observes an
increase of γ, in accordance with the increase of lt [see
Fig. 2(b)]. Note that γ drops over 2 orders of magnitude
within a relative bandwidth of Δω=ωo ¼ 0.2.
It is also interesting to compare the values obtained

numerically with those expected from the semianalytical
approach within the diffusion approximation. The decay
constant for diffuse light in a 2D system open along two
directions is given by

γ ¼ 2π2D
ðLþ 2zeÞ2

; (6)

where ze ¼ ðπ=4Þlt is the so-called extrapolated length
[38,39] (internal reflections are neglected), and D ¼ velt=2
is the diffusion constant with ve ¼ c=ne the energy velocity.
According to Eq. (3), the optical thickness L=lt of our

(a)

(b)

(c)

(d)

FIG. 2 (color online). Modified transport due to correlations.
(a) Spectral and angular map of the “effective” differential
scattering cross section dσ⋆=dθ for weakly (p ¼ 30%) and
strongly (p ¼ 70%) correlated media. (b) Inverse transport mean
free path l−1

t , (c) scattering anisotropy factor g, and (d) locali-
zation length ξ for different degrees of correlation p.
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systems can be extremely small at very low frequencies,
so that even less than a single scattering event can occur.
In such a regime, Eq. (6) is not accurate [40]. Hence, we
limit our analysis to frequency domains [inset in Fig. 3(c)]
for which L=lt ≥ 6, so that the accuracy of diffusion theory
is still reasonably good. While the trends of the decay
constant as a function of frequency and degree of correlation
are in good agreement, only a fair agreement is found
quantitatively. The deviation for p ¼ 70% in particular is
marked (more than 1 order of magnitude). This discrepancy
can be explained by considering that (i) the expression used
to evaluate the transport mean free path [Eq. (3)] neglects
completely recurrent scattering and near-field phenomena
which are likely to occur in such dense systems (here, the

filling fraction is f ¼ 20%), and (ii), more importantly for
the strongly correlated system, the diffusion approximation
disregards completely light localization phenomena, due to
interference between multiply scattered waves, which are
expected to yield a reduction of the diffusion constant.
To better appreciate the occurrence of light localization in

these systems, we retrieve the average lifetime γ−1 from the
numerical data at frequency a=λ ¼ 0.21 for different
p, as shown in Fig. 3(d). The clear, weakly fluctuating trend
with varyingp indicates that six disorder realizations already
provide reasonably converged results. The red line represents
the prediction of diffusion theory according to Eqs. (3)
and (6). A clear deviation between numerical calculations
and diffusion theory occurs as p increases. In particular, a
dramatic increase of γ−1 over an order of magnitude is
observed for p ¼ 70%. Such a pronounced effect cannot be
attributed solely to a reduction of lt, since it would be
captured by Eq. (6), but rather to Anderson localization of
light. Localized modes are, on average, characterized by an
exponentially decaying intensity distribution [41]. This
implies, due to weak coupling between these modes and
the environment, lifetimes on average that are much longer
than those of quasiextendedmodes. Here, the reduction of lt
with increasing p yields a considerable variation of the
localization length ξ, which eventually becomes shorter than
the sample size L. This is, indeed, supported by the intensity
maps shown in the insets of Fig. 3(d), calculated for a single
steady-state source placed in the center of the system. Our
interpretation is also corroborated by the observation of large
variations of lifetimes for different realizations of disorder, as
shown by the pronounced error bars in Fig. 3(d) for high p,
which is expected in the localized regime. A transition from a
quasi-extended regime (ξ > L) to a localized regime (ξ ≤ L)
has therefore been achieved by merely adding short-range
correlations in the disordered system, keeping f and o
unchanged. From these considerations, we can estimate that
ξ ≤ L, which is 1 order of magnitude smaller with respect to
the prediction of Eq. (5).
To conclude, we have investigated how short-range

correlations lead to considerable modifications of light
transport and localization phenomena in 2D disordered
photonic structures. Using a semianalytical approach for
the structure factor of the correlated systems (due to Baus and
Colot [32]) and a modified independent scattering approxi-
mation [15,16], we have investigated how key transport
quantities are affected by short-range structural correlations.
We have found in particular that short-range correlations
make it possible to increase and/or decrease the localization
length by several orders of magnitude. This shows that it
is possible to design structures that are very weakly scatter-
ing and strongly localizing at nearby frequencies. Two-
dimensional disordered systems in which the light transport
and localization are finely controlled may find interest in
the fundamental study of localization phenomena [5], the
conception of planar random lasers [42], thin-film

(a) (b)

(c)

(d)

FIG. 3 (color online). Numerical FDTD simulations. (a) Sketch
of the simulated system for the evaluation of the average decay
constant of the modes. (b) Normalized integrated energy density
UnðtÞ versus time at frequency a=λ ¼ 0.21, for different p. The
straight lines are decaying exponentials, emphasizing the multi-
exponential decay observed at short times. The decay constant
values γ were estimated at long times. (c) Numerically estimated
decay constants versus frequency as a function of p. The inset
shows the decay constants evaluated semianalytically from
Eq. (6), only for L=lt ≥ 6. (d) Numerically estimated average
lifetime γ−1 as a function of p at frequency a=λ ¼ 0.21. The red
line represents the prediction according to diffusion theory and
the intensity maps are calculated for different p.
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photovoltaic and lighting technologies [10], on-chip random
spectrometers [14], or even help to reach the strong coupling
regime with quantum dots or molecules [43,44].
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