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We demonstrate quantum walks of correlated photons in a two-dimensional network of directly laser
written waveguides coupled in a “swiss cross” arrangement. The correlated detection events show high-
visibility quantum interference and unique composite behavior: strong correlation and independence of the
quantum walkers, between and within the planes of the cross. Violations of a classically defined inequality,
for photons injected in the same plane and in orthogonal planes, reveal nonclassical behavior in a nonplanar
structure.
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Quantum walks (QWs) are an illustrative example for the
indeterminism inherent to quantum mechanics [1]. They
are used to model a variety of processes from excitation
transfer across spin chains [2,3] to energy transport in
photosynthetic complexes [4]. They enable studying large
scale quantum interference [5] and their simulation on a
quantum computer provides a route to universal quantum
computing [6]. One-dimensional (1D) networks provide a
conceptually straight-forward and readily implementable
way of realising QWs.
There is now a plethora of single particle QW imple-

mentations across different platforms [7–17]; however, the
dynamics of single particle QWs can be described in the
context of classical wave theory [18]. QWs of multiple
indistinguishable particles, on the other hand, have been
shown to exhibit nonclassical correlations. In general, they
cannot be described by considering separately the quantum
state of each particle and their features cannot be mimicked
with classical light without limiting the visibility of
observed quantum interference [19] or the introduction of
an increasing number of experiments [20–22]. Further-
more, the Hilbert space that describes multiparticle QWs
grows exponentially with the linear increase in particle
number and network size [5,23].
An additional physical dimension in the network can, in

principle, entail the degrees of freedom offered by two
walkers on a 1D network [22,24,25]. Moreover, the addi-
tional physical dimension enables network configurations
(directly mapping to graph structures) that are not other-
wise available, allowing for example a selective degree of
connectivity for different single sites (vertices) in the
structure and asymmetries in the network. Many interesting
problems, such as energy transport in biological systems
[4,26], graph theory problems [27] and quantum search
algorithms [28–30], require two-dimensional (2D) graphs,

with a high degree of connectivity, where vertices are
connected to multiple edges.
A promising route towards the realisation of networks

with topologies beyond 1D, nearest-neighbor coupled geom-
etries is the direct laser inscription of waveguides in trans-
parent substrates. This technique allows fabrication of
complex 2D networks on a single optical chip. It overcomes
the limitations of established lithographic methods and
allows implementation of intricate topologies in an inte-
grated fashion. The quantum behavior of single photons in
simple planar arrangements of laser written waveguides,
such as directional couplers, has been demonstrated with
high visibility [31]. The additional dimension allowed by the
direct laser write technique has also been employed to
compensate for polarization dependent coupling [32] and
altering the boundary conditions of 1D QWs [33].
In this work we implement QWs of two indistinguishable

photons in a 2Dwaveguide lattice with sites that have a high
degree of connectivity. This lattice was fabricated in fused
silica with the direct laser write technique [34]. We observe
correlations that strongly violate the limit for classical light
propagating in the network, illustrating high-visibility quan-
tum interference at the single photon level.
The Hamiltonian for a system of N evanescently coupled

waveguides is given by [20]

Ĥ ¼
XN
q¼1

�
βqa

†
qaq þ

XN
r¼1

Cq;ra
†
raq

�
(1)

and is equivalent to the adjacency matrix of the graph
representing the waveguide structure, where að†Þq is the
bosonic annihilation (creation) operator for a photon in
waveguide q, βq is the propagation constant of guide q and
Cq;r is the coupling strength between waveguides q and r.
In general each waveguide can be coupled to several other
waveguides, enabling the fabrication of structures that
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directly map to graphs with a high degree of connectivity,
with different coupling strengths for nearest and non-
nearest neighboring waveguides.
For two indistinguishable input photons in waveguides q

and r, the probability of detecting one photon in output
waveguide q0, coincident with the other photon in wave-
guide r0 is given by the correlation function [35]:

Γðq;rÞ
q0;r0 ¼

1

1þ δq0;r0
jUq0;qUr0;r þUq0;rUr0;qj2: (2)

withU ¼ expð−iHzÞ as the evolution unitary of the system
and z as the evolution length.
A sufficient criterion for nonclassical behavior is a

violation of the inequality [5,19],

Vq;r ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γcl
q;qΓcl

r;r

q
− Γcl

q;r < 0; (3)

with Γcl here referring to intensity correlations between
classical light beams. This inequality imposes a limit to the
magnitude of the on-diagonal terms in the correlation
matrix in comparison to the associated off-diagonal ele-
ments. Its violation in the quantum regime is a sign of
photon bunching.
The waveguides of the QW network in this work are

labeled as in Fig. 1(a), where waveguides that have first
order coupling in the horizontal (vertical) plane are denoted
with a prefix X (Y). The central waveguide has first order
coupling in both the horizontal and vertical plane and is
labeled as C. For a single particle walk the size of the
Hilbert space coincides with the size of the physical
network structure. For a two-particle input the Hilbert
space grows larger. This two-particle configuration space
can be interpreted as the Hilbert space of a single-particle
QW on a more complex graph with a probability distribu-
tion equalling the original two-particle correlation function.
The on site potentials and hopping amplitudes in this
simulated single particle graph can be deduced from
considering the Heisenberg equation of motion
ðd=dzÞÂðzÞ ¼ ½Ĥ; Â� for the Hamiltonian of the physical

network Eq. (1) with single particle input Â ¼ a†q and two
particle input Â ¼ a†qa

†
r as described in [5]. The single-

particle graph structure corresponding to two-particles on
the swiss cross structure is shown in Fig. 2 [36].
We measured correlation matrices for two different input

states, one corresponding to injection of the twin photons in
waveguides located on the same plane (waveguides X1 and
X4) and also in waveguides located on orthogonal planes
(X1 and Y1) [36]. By varying the relative temporal delay
between the two input photons, their degree of indistin-
guishability was tuned. The nonclassical nature of the
correlations measured can be quantified by the violations of
inequality (3).
In the correlation matrices summarized in Fig. 3 one can

identify four regions, two for correlated detection events
betweenoutputwaveguides in the sameplane (ΓX1−X4;X1−X4;
ΓY1−Y4;Y1−Y4) and two for events between waveguides in
different planes (ΓX1−X4;Y1−Y4; ΓY1−Y4;X1−X4). From these it
can be seen that the distinct features that appear for indis-
tinguishable photons and the violations of the classical limit
spread throughout the 2D network. The observed behavior
therefore cannot be attributed to independent, 1D, single
photon QWs, but rather is characteristic of a single 2D QW

FIG. 1 (color online). (a) Schematic of the 2D evanescently
coupled waveguide array. The coupling constant Cð1Þ is for
adjacent waveguides and the second order coupling is denoted as
Cð2Þ. (b) Schematic of the interface section of our waveguide
circuit, showing the input waveguides fanning from a planar
configuration to the 2D, swiss cross configuration.

FIG. 2 (color online). Graph structure simulated with a two-
photon input state in the swiss cross structure shown in Fig. 1(a).
Each of the 45 vertices corresponds to a two-particle state, with
different degrees of connectivity (up to degree 8), and there are
126 links between different vertices corresponding to allowed
transitions between two-particle states. Red lines and red vertices
correspond to coupling strengths of C and potentials of β,
respectively, so they coincide with the ones in the swiss cross
structure. For vertices corresponding to a state with two particles
in the same waveguide, the on site potential and the coupling are
enlarged by a factor of 2 and

ffiffiffi
2

p
respectively, due to normal-

isation of the two-particle wavefunction. We mark these vertices
and links in green. The two yellow vertices represent the two
different two-photon input states in the experiment (X1 − X4 and
X1–Y1). Two different complete connecting paths (jX1X1i to
jX4X4i and jX1X1i to jY1Y1i) are labeled as examples.
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of two correlated photons. Different strengths of the viola-
tions observed for each individual waveguide pair, reflect
the fact that bunching is not equally likely, due to the variety
of photon paths contributing to the quantum interference.
A measure of the quality of nonclassical interference

within the network can be obtained by looking at the
diagonal elements of the correlation matrices, i.e., the
coincidence of the two photons in the same output wave-
guide. The maximum visibility of nonclassical interference
for these diagonal elements depends solely on the quality of
the indistinguishability between the two photons inside the
quantum network, irrespective of the network structure and
the evolution length of the coupling region [35,37]. Fig. 4
shows one of the peaks measured with visibility
V ¼ 96.8� 2.5%, demonstrating the high quality non-
classical interference in our devices.
For a comparison of our experimental results with theory,

we calculated the similarities S¼
�P

q0;r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γexp
q0;r0 ·Γ

th
q0;r0

q �
2
=

ðPq0;r0Γ
exp
q0;r0

P
q0;r0Γth

q0;r0 Þ between the experiments and sim-
ulations. For the simulations the propagation and coupling
constants were deduced from classical light measurements
via numerical optimisation and the input coupling efficien-
cies of single waveguides from single photon measure-
ments [36]. Exhibiting a similarity of 93.97% with respect
to the simulations, the experimental results for photons
injected in the same plane are in good agreement with the
theoretical predictions [Fig. 3(c)]. However the similarity
drops to 81.7% for injection of the photons in orthogonal

planes [Fig. 3(g)]. The similarities for distinguishable
photons are 98.5% for both input cases.
The observable discrepancy between Figs. 3(f) and (g)

shows that our model does not fully incorporate all lattice
parameters (additional phases or whether the array main-
tains indistinguishability [36]). Support of quantum inter-
ference by our 2D structure is proven by the violations in
Figs. 3(d) and (h) and the following evidence: (i) The
diagonal peaks, corresponding to the probability to detect
bunched photons, in Fig. 3(f) are substantially increased
due to constructive interference—the majority of them is
doubled as predicted by theory—in comparison to the
distinguishable case in Fig. 3(e). (ii) We observe clearly
differing behavior of correlations in the X and Y plane of
the structure for distinguishable and indistinguishable
cases. For example, if we consider photon q0 to occupy
either X1 or X3, two of the four highest peaks [(X1, C),
(X1, Y2), (X3, C) and (X3, Y2)] in the distinguishable case
[Fig. 3(e)] vanish in the indistinguishable case [Fig. 3(f);
(X1, Y2), (X3, C)]—even though they are allowed by the
single photon trajectories—while the other two increase.
To elucidate the impact of the particular swiss cross

geometry on the QW, it is instructive to investigate the
correlation among the branches [left - L, right - R, up - U,
down - D, Fig. 5(a)], as obtained by summation over their

constituent waveguides’ individual coincidences ΓðX1;X4Þ
q0;r0 .

Figures 5(b)–(d) show the results of this analysis. Strong
violations arise across the planes spanned by the input

(a)

(e)

(b) (c) (d)

(f) (g) (h)

FIG. 3 (color online). Correlation matrices for the two different input combinations. Top row is for inputting the two photons on the
same plane in opposite corners (X1 and X4). The measured results for delays leading to (a) distinguishable and (b) indistinguishable
photons are presented together with (c) the numerical simulation and (d) the violations (V) of inequality (3) (measured in standard
deviations σ, assuming Poissonian statistics for each individual coincidence count and propagating the error—white cells represent no
violation), both for the case of indistinguishable photons. The bottom row shows the corresponding results for inputting the two photons
in different planes in adjacent corners (X1 and Y1). For both inputs, violations of the inequality for distinguishable photons were not
observed, as was expected.
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branches (L and R) on one side and U and C on the other
side as visible in Fig. 5(d). This is reflected in a suppression

of the off-diagonals ΓðX1;X4Þ
LðRÞ;UðCÞ in Fig. 5(c) compared to the

distinguishable case in Fig. 5(b). Hence, the photons tend to
occupy either the input branches or the vertical branch/
center. This phenomenon is reminiscent of photon bunch-
ing observed in 1D lattices [5,19]. In contrast, large

off-diagonals ΓðX1;X4Þ
U;C and ΓðX1;X4Þ

L;R persist in Fig. 5(c),
which means that no bunching, and consequently no
violation, occurs within the two planes. Moreover, the
single waveguide violations matrix [Fig. 3(d)] reveals no
intrabranch violations either. These observations imply that

the photons are distributed almost independently, i.e.,
behave like distinguishable particles, in each of the two
regions. This composite behavior of path entanglement and
independence is a direct consequence of the nonplanar
geometry of the 2D network, confirming theoretical pre-
dictions [20]. One also notices the low probability for
detecting photons in the lower branch (D). The simulations
suggest that this can be attributed to weaker coupling
between this branch and the others—most likely induced
by positioning errors during fabrication—with some con-
tribution of unevenly distributed losses in the interface
segment as well (Fig. 1(b) and [36]).
We have experimentally implemented a 2D, two-photon

QW by using waveguide arrays in a swiss cross geometry
—a building block for larger lattice-based structures. We
demonstrated two-photon quantum interference with high
visibility on fully 3D integrated waveguide device with
features that cannot be observed in planar arrangements,
including the combination of strong correlation and inde-
pendence of the quantum walkers between and within the
planes of the cross. The ability to inscribe waveguides in
three dimensions enables implementation of networks with
topologies that go beyond the restriction of lithographic
methods. Furthermore, QWs of multiple particles enable
the simulation of graph structures which are not imple-
mentable as a physical waveguide structure, e.g., the
corresponding simulated graph for the swiss cross network
in Fig. 2. The implications from using entanglement to
simulate boson and fermion statistics [32,38] as well as
precise control of the boundary conditions of the system
[39] in 2D settings remain to be investigated. Together with
the possibility of introducing interactions between particles
(e.g., measurement-induced [40] or simulating 1D inter-
actions with 2D lattices [41]), this may open ways for new
directions in analogue quantum simulations and quantum
computing [42].
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FIG. 4 (color online). Quantum interference peak observed
when varying the relative free-space delay of the twin photons
and monitoring the presence of both photons in the same
waveguide using a balanced fiber beam splitter butt-coupled to
the output waveguide. This particular peak is for both photons
input on the same plane (X1, X4) and monitoring output wave-
guide X3, showing a visibility of 96.8� 2.5%. (Error bars
indicate the standard deviation of the underlying Poissonian
photon counting statistics.)

(a) (b) (c) (d)

FIG. 5 (color online). (a) Schematic of the 2D waveguide array when summing correlations over sites within the different branches.
(b)–(c) Correlation matrices between the branches for inputting the two photons on the same plane in opposite corners (X1 and X4),
showing the (b) distinguishable and (c) indistinguishable case. (d) Violations (V) of inequality (3) (measured in standard deviations σ,
assuming Poissonian statistics for each individual coincidence count and propagating the error—white cells represent no violation) for
indistinguishable photons. No violations were observed for distinguishable photons, as was expected.
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