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A single ion immersed in a neutral buffer gas is studied. An analytical model is developed that gives
a complete description of the dynamics and steady-state properties of the ions. An extension of this model,
using techniques employed in the mathematics of economics and finance, is used to explain the recent
observation of non-Maxwellian statistics for these systems. Taken together, these results offer an explanation
of the long-standing issues associated with sympathetic cooling of an ion by a neutral buffer gas.
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The fact that two isolated objects in thermal contact tend
to the same temperature is the most basic tenet of thermo-
dynamics. It is also the essence of the technique of
sympathetic cooling, where a sample is prepared at a desired
temperature by bringing it into thermal contact with a much
larger body already at the desired temperature. It is difficult
to overstate the importance of this technique as it underpins
applications ranging from basic refrigeration to quantum
information science.
It may be considered surprising then that a gas of ions

trapped in a radio-frequency (rf) Paul trap and immersed in
a reservoir of neutral atoms does not equilibrate to the same
temperature as the neutral atoms. Instead, the ions are
found to have a higher temperature than the neutral gas, and
in some cases are heated so much that they escape the trap.
Since the early work of Major and Dehmelt [1] it has been
known that this apparent contradiction with the laws of
thermodynamics is due to the fact that ions are subject to a
time-dependent confining potential and are therefore not an
isolated system. However, despite pioneering work by
Dehmelt and others [2,3], an accurate analytical description
of the relaxation process has not yet been achieved. Given
the recent surge in interest in hybrid atom-ion systems
[4–14], where ions are immersed in baths of ultracold
atoms, there is currently a strong need for such a descrip-
tion so that these systems can be understood and optimized.
Building upon the important work of Moriwaki et al. [2],

here we present a simple kinematic model, which accu-
rately describes the ion relaxation process. This model,
which has been verified by detailed molecular dynamics
simulations, provides a simple and accurate means to
calculate both the relaxation dynamics and the properties
of the ion steady state. This model also provides significant
physical intuition for the problem and, as such suggests
several ways for optimizing ongoing and planned experi-
ments in fields as diverse as quantum chemistry [4–13],
mass spectrometry [15], and quantum information [16].
In the remainder of this work, we first review the basics

of ion trapping and introduce the time-averaged ion kinetic
energy. We then consider the effect of a collision with a

neutral particle on the evolution of the kinetic energy of a
single ion in a Paul trap and show that due to the presence
of the time-dependent potential the collision center-of-mass
frame energy is not conserved. Following this result, we
develop a rate equation model, which accounts for the
relaxation and exchange of the ion energy in all three
dimensions. We then present simple formulas for the
calculation of the ion temperature relaxation rate and
steady-state value, as well as the dependency of these
values on the ion trapping parameters and particle masses.
We establish the validity of these results by comparing
them to a detailed molecular dynamics simulation. We
conclude with an explanation for the recent observation
[17] of non-Maxwellian distribution functions for these
systems.
Ion trap dynamics.—The trajectory, rj, and velocity, vj,

of an ion (mass mi and charge e) in a linear Paul trap (field
radius r0, rf trapping voltage Vrf, rf frequency Ω, dc end-
cap voltage Uec, axial length 2z0, and geometrical factor κ)
can be expanded as a linear superposition of two orthogonal
Mathieu functions cðaj; qj; τÞ and sðaj; qj; τÞ with coef-
ficients Aj and Bj,

�
rjðτÞ
vjðτÞ

�
¼

�
cjðτÞ sjðτÞ
_cjðτÞ _sjðτÞ

��
Aj

Bj

�
; (1)

where j ¼ x, y, z, τ ¼ Ωt=2 and the dependence on
the Mathieu parameters (fax;ay;azg¼f−a;−a;2ag and
fqx; qy; qzg ¼ fq;−q; 0g with q ¼ 4eVrf=mir20Ω2 and
a ¼ 4 κeUec=miz20Ω2) is suppressed [1]. The Fourier trans-
form of cjðτÞ and sjðτÞ is a discrete spectrum,

cjðτÞ þ ısjðτÞ ¼
X∞
n¼−∞

C2neıðβjþ2nÞτ: (2)

The n ¼ 0 term corresponds to the “typical” motion of
a harmonic oscillator—i.e., the secular ion motion. The
remaining terms with n ≠ 0 represent the components of
the ion motion driven by the rf field—i.e., the so-called
micromotion.
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As a result of this spectrum, the instantaneous kinetic
energy is not a conserved quantity. Instead, energy coherently
flows back and forth between the kinetic energy of the ion
and the confining electric field at frequency nΩ. Therefore,
it is useful to define the time-averaged kinetic energy

Wj ¼
m
2

lim
T→∞

1

2T

Z
T

−T
v2jdτ ¼

m
2
_c2jðA2

j þ B2
jÞ; (3)

where the bar denotes the time average. Inverting Eq. (1),Wj
is related to the instantaneous coordinates rj and vj through

Wj ¼
m_c2j
2w2

0;j

�
ð_c2j þ _s2jÞr2j þ ðc2j þ s2jÞv2j

− 2ðcj _cj þ sj _sjÞrjvj
�
; (4)

where w0;j is the Wronskian of cj and sj. Wj includes
contributions from both the random thermal motion of the ion,
i.e., the secular energy, and the micromotion. The ratio of the
secular energyUj to the total average kinetic energy is simply

ηj ≡ Uj

Wj
¼ jC0j2P∞

n¼−∞ jC2nj2
: (5)

In the x and y directions, the micromotion energy is given by
Wmm;j ¼ Wj −Uj and for q < 0.4, ηx;y ≈ 1=2. In the
z direction where the trapping field is time independent
(q ¼ 0), czðτÞ and szðτÞ simply become the cosine and
sine functions. Thus, all micromotion sidebands vanish
and ηz ¼ 1.
Modeling the collision process.—When a trapped ion is

immersed in a buffer gas of neutral atoms of mass mn and
density ρ, the Mathieu trajectory of the ion is modified by
interactions with the neutral atoms. The ion-neutral inter-
action potential is comprised of a long-range attraction
VðrÞ ¼ −C4=2r4 and short-range repulsion, where C4 is
given by C4 ¼ αpe2=ð4πϵ0Þ2, and αp is the polarizability of
the neutral atom. Recent work [18], has explored the effects
of this potential at ultracold temperatures, showing that the
perturbations of the ion trajectory by the C4 potential can
lead to heating of the ion. Herewe do not consider this effect,
but given that the characteristic length of the C4 interaction
[19] is small compared to the trap dimension we treat the
collision as a pointlike interaction. As will be seen, this
approximation is justified, despite the important result of
Ref. [18], as the effects considered here typically lead to
temperatures that preclude the observation of the effects
considered in Ref. [18]. We also make the additional
simplifying assumptions that the density of the neutral
atoms is constant and that inelastic processes, such as charge
exchange, do not occur.
Because the motion of the ion differs significantly in the

radial and axial directions of a linear Paul trap, the
relaxation and redistribution of energy is significantly more
complicated than in a time-independent harmonic trap [20].
We therefore describe the statistically averaged evolution

of the ion kinetic energy W ¼ ½Wx;Wy;Wz�T by a three-
dimensional rate equation,

dhWðtÞi
dt

¼ −ΓMðhWðtÞi −WstÞ; (6)

where Γ is an average collision rate (which may depend on
energy), M is a 3 × 3 “relaxation matrix” that accounts for
energy damping and redistribution among the three trap
directions, and Wst is the steady-state kinetic energy. The
angled bracket denotes averaging of the sympathetic cool-
ing experiment over multiple trials.
In order to calculate both Γ andM it is necessary to know

the neutral-ion differential elastic scattering cross section
dσel=dΩ, which, given an interaction potential, is a straight-
forward quantum scattering calculation [21]. Regardless of
the specific atom-ion potential, however, several generic
arguments can be made. First, the differential cross section
always exhibits a large forward scattering peak at all energy
scales [22]. Thus, the majority of atom-ion collisions lead to
only slightly deflected trajectories, resulting in a very small
change in W. Therefore, as originally argued by Dalgarno
and co-workers [23], to prevent an overestimate of the
energy redistribution due to collisions the momentum trans-
fer (diffusion) differential cross section, i.e., ðdσd=dΩÞ ¼
ð1 − cos θÞdσel=dΩ should be used to calculate the total
atom-ion collision rate, where θ is the angle of scattering.
Second (and fortuitously), the diffusion differential cross
section is approximately isotropic in scattering angle,
especially after thermal averaging, and agrees quite well
with the simple Langevin cross section [24] σd ≈ σL ¼
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C4=E

p
—see [25] sect. A, for a comparison of a quantum

scattering calculation to the Langevin differential cross
section. Therefore, we replace the cross section by an
isotropic profile which integrates to σL. Under this approxi-
mation, the average collision rate Γ ¼ 2 πρ

ffiffiffiffiffiffiffiffiffiffiffi
C4=μ

p
(where μ

is the reduced mass) becomes energy independent and the
calculation of M is greatly simplified. As demonstrated
below, the validity of this approximation is confirmed by
comparison to a detailed molecular dynamics simulation,
which uses the full quantum differential cross section. The
resulting error in the relaxation rate is smaller than 25% for
collision energies down to 1 mK.
With the collision rate in hand, the relaxation matrix M

is calculated by considering the kinematics of a collision
between an ion and neutral atom as follows. Suppose that
at time τ an ion undergoes an elastic collision with
an incoming neutral atom of velocity vn. Conservation
of momentum and energy for the collision dictates that the
velocity of the ion after the collision with the neutral atom
is given by the sum of center-of-mass velocity and the
scattered relative velocity [26],

v0 ¼ 1

1þ ~m
v þ ~m

1þ ~m
vn þ

~m
1þ ~m

Rðv − vnÞ; (7)
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where ~m ¼ mn=mi is the mass ratio and R is the collision
rotation matrix, which, following the above discussion, is
isotropic. Likewise, because the characteristic length of
the C4 interaction [19] is small compared to the trap
dimension, the position of the ion is assumed to be
unchanged during the collision, i.e., r0 ¼ r. By requiring
that r0 and v0 also correspond to a Mathieu solution
through Eq. (1), a new set of oscillation amplitude
(Aj

0, Bj
0) and, thus, the average kinetic energy after the

collision W0, can be found.
This last step is the critical difference between sympathetic

cooling in static and time-dependent traps, which is illus-
trated with the following one-dimensional example. In a
static trap, like that in Ref. [27], if a collision happens at
position x ¼ a that reduces the velocity such that vx0 ¼ 0, a
trapped particle of mass m begins a “new” oscillation
trajectory, x0 ¼ a cosð2π ffiffiffiffiffiffiffiffiffi

k=m
p

tÞ, where k is the trap spring
constant. This collision always reduces the total energy of the
particle. By contrast, in the time-dependent potential of a
linear Paul trap, because of the terms in Eq. (2) with n ≠ 0, it
is possible that even though the collision brings the particle to
rest, the particle may have a higher energy after the collision.
This can be seen by again considering a collision that leads to
vx0 ¼ 0, which, depending on the rf phase, could be
accomplished by having large and opposite contributions
to the velocity from the n ¼ 0 (secular) mode and n ≠ 0
(micromotion) modes. Thus, even though the particle is
momentarily stopped, it could leave the collision on a
trajectory of higher amplitude.
With this prescription, the calculation of M is straight-

forward. Using Eq. (7) with Eq. (4), and taking the average
with respect to vn, R and τ, the average change of W per
collision is found by hW0i − hWi ¼ −MhWi þ N (see
[25] sect. B), where

M ¼ − ~m
ð1þ ~mÞ2

0
B@I − ~m

2
64

2ϵ−1
3

α
6

α
6

α
6

2ϵ−1
3

α
6

1
6

1
6

− 1
3

3
75
1
CA (8)

and

N ¼ ~m
ð1þ ~mÞ2

2
4 αhWni
αhWni
hWni

3
5: (9)

The components of the steady-state kinetic energy Wst ¼−M−1N reduce to

Wst;x

hWni
¼ Wst;y

hWni
¼ 9ð2þ ~mÞα
18− 3 ~mðαþ 4ϵ− 4Þ− 2 ~m2ðαþ 2ϵ− 1Þ

Wst;z

hWni
¼ 3½6þ ~mð2þα− 4ϵÞ�
18− 3 ~mðαþ 4ϵ− 4Þ− 2 ~m2ðαþ 2ϵ− 1Þ ;

(10)

where hWni is the average kinetic energy of the neutral
atom in each dimension, and α and ϵ are defined by
integrals of Mathieu functions (see [25] sect. B), and for
low values of q and a, their numerical values are approxi-
mated by [28],

α ≈ 2þ 2q2.24; ϵ ≈ 1þ 2.4q2.4:

Model results.—First, shown in Fig. 1(a) are the com-
ponents ofWst normalized by hWni obtained from Eq. (10).
Also, shown in this figure are the results of a detailed
molecular dynamics simulation, described in [25], sect. C.
In the limit of a light neutral atom ( ~m ≈ 0) and q → 0,
α ≈ 2, Wst=hWni ≈ ½2; 2; 1�T. Thus, at steady state,

hUxi ¼ hUyi ¼ hUzi ¼ hWmm;xi ¼ hWmm;yi ¼ hWni;

a result often referred to as the “equipartition” [29] of
kinetic energy between secular motion and micromotion.
As ~m increases, the steady-state secular energy deviates
from equipartition and becomes much higher than hWni.
As q increases, this deviation becomes significant more
quickly.
Second, the solution to Eq. (6) is a linear combination of

three fundamental relaxation processes, whose rates are
determined by the three eigenvalues of M. The asymptotic
behavior of the energy evolution is governed by the slowest
relaxation rate, Γλ0, where λ0, the smallest eigenvalue ofM, is

(a)

(c)(b)

FIG. 1 (color online). (a) Wst as a function of ~m for q ¼ 0.14
(red) and q ¼ 0.42 (blue). The axial and radial components of
Wst are denoted by dashed and solid lines (theory) and dots
(simulation). (b) Eigenvalues of M as a function of ~m for fixed
q ¼ 0.14 and a ¼ 0. Black dots are asymptotic relaxation rates
(normalized by Γ) from numerical simulations. Lines are three
calculated eigenvalues of M. The smallest one (blue line)
intersects λ ¼ 0 line at ~m ¼ ~mc, which separates cooling from
heating. (c) Simulated (dots) and calculated (blue line) critical
mass ratio ~mc as a function of trap q parameter, as compared to
previous results in Refs. [1,2,17].

PRL 112, 143009 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

143009-3



λ0 ¼
~m

ð1þ ~mÞ2
�
1 − ~m

~mc

�
; (11)

and ~mc is the critical mass ratio given in terms of trap
parameters as,

~mc ¼
3½4 − α − 4ϵþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 8αð1þ ϵÞ þ 16ϵ2

p
�

4ð2ϵþ α − 1Þ : (12)

The eigenvalues of M are shown in Fig. 1(b) and are
compared to the asymptotic relaxation rates observed in the
simulation. For ~m ≪ ~mc, the cooling rate from Eq. (11) is
similar to the traditional sympathetic cooling result up to a
numerical factor [20]. In this regime, the initial positive
slope of λ results from enhanced energy transfer efficiency
through collisions with neutral atoms of similar mass.
However, the additional factor 1 − ð ~m= ~mcÞ causes λ to
reach a maximum and decrease to negative values once ~m
exceeds ~mc. At this point, it is observed in the simulation
that the oscillation amplitude of the ion grows with
collisions, until the ion becomes too energetic to be
trapped, regardless of the energy of the buffer gas.
The transition from sympathetic cooling to heating by

a buffer gas is thus defined by ~m ¼ ~mc and is shown in
Fig. 1(c) as a function of q along with the results of the
molecular dynamics simulations and previous results from
other models of the process [1,2,17]. Taken together the
results of Figs. 1(a)–1(c), make the case for using as small
a buffer gas mass and as low q as possible, if significant
sympathetic cooling is desired.
Non-Maxwellian statistics in an ion trap.—As originally

observed in the seminal work of DeVoe [17], the peculiarity
of sympathetic cooling in an ion trap is also manifested
in the steady-state energy distribution of the ion, which
features a heavy power-law tail due to the random ampli-
fications of the ion energy by collisions. To gain a
quantitative understanding of how this distribution arises,
consider a simplified model, in which the motion of the ion
and neutral atom are restricted to one dimension, and
R ¼ −1 in Eq. (7). In (A, B) space, collisions result in a
random walk given by

�
ANþ1

BNþ1

�
¼

�
Iþ ζ

w0

�
s_c s_s
−c_c c_s

�
τN

��
AN

BN

�
þ ζvn

w0

�
s
c

�
τN

;

(13)

where ζ ¼ 2 ~m=ð1þ ~mÞ, ½ANþ1; BNþ1�T are the coordinates
after the Nth collision, which occurs at τ ¼ τN (N ¼
1; 2;…;∞). The τN constitute an array of Poissonian
variables, with average interval equal to Γ−1. As can be
seen from Eq. (13), the random walk in (A, B) space has
both additive and multiplicative terms. As is well known in
the statistics of economics and finance [30], multiplicative
terms in the random walk give rise to the power-law
distribution as follows.

A recurrence relation forWN can be derived from Eqs. (3) and
(13), and if only the distribution of high energy ions, i.e.,WN ≫
hWni is considered, this relation reduces to WNþ1 ¼ CWN ,
where the multiplicative coefficient C is given by

CðτN; θNÞ ¼ 1þ 2ζ
s_c
w0

����
τN−θN

þ ζ2

w2
0

ðc2 þ s2ÞjτN _c2jτN−θN ;

(14)

and tan θN ¼ BN=AN . BecauseW only depends on A2 þ B2, it
is expected that asN → ∞, θN becomes uniformly distributed in
the range of [0, 2π) and uncorrelated with τN . QðCÞ, the
probability density of C, is calculated from Eq. (14) and exhibits
random amplification of the ion energy, i.e., C > 1, as shown in
Fig. 2 panels (a) and (c) for different values of ~m and q.
Because of this random amplification, W develops a

power-law tail in its probability density at steady state, i.e.,
PðWÞ ∝ W−ðνþ1Þ, where ν can be found numerically from
the condition hCνi ¼ 1 [31]. Figure 2, panels (b) and (d),
compare the prediction to the energy distribution extracted
from a molecular dynamics simulation, which subjects the
ion to 106 trials, in each of which the ion undergoes 104

collisions, for each ~m and q parameter. As ~m and q increase
random amplification becomes more likely, causing the
energy distribution to become more non-Maxwellian. In
comparison, there is no such random amplification from
collisions in a static trap (see [25] sect. D for details).
By considering the value of ν as ~m → 0 and ~m → ∞, we

find that the power can be approximated as ν1D ≈ 1.67= ~m −
0.67 in one dimension (see [25] sect. E). To extend the above
discussion to a full 3Dmodel,C necessarily becomes a 3 × 3
stochastic matrix, and the theory of stochastic matrix
products [32], which is beyond the current scope, must
be considered. Nonetheless, one expects ζ3D ≈ ð1=2Þζ1D
because in three dimensions R average to zero, thus,

FIG. 2 (color online). Probability density of the multiplicative
noise QðCÞ and corresponding ion’s energy PðWÞ for the 1D
model from simulations for fixed q ¼ 0.23 [lines in panel (a) and
(b)], and fixed ~m ¼ 0.23 [dots in panel (c) and (d)]. The tail of
PðWÞ is fitted to the power-law form of W−ðνþ1Þ [solid line in
panel (c) and (d)], where ν is given by hCνi ¼ 1.
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ν3D ≈ 2ν1D, which agrees reasonably well with the empiri-
cally extracted power law of DeVoe, νemp ≈ 4= ~m − 1.
In summary, we have developed an analytical model that

accurately predicts the steady-state value and dynamics of
the kinetic energy of a single ion immersed in a neutral
buffer gas. The transition from sympathetic cooling to
heating, and its dependence on trap parameters and masses
of the particles have also been explained. Finally, we have
confirmed that the recent observation of non-Maxwellian
statistics [17] for a trapped ion can be attributed to random
heating collisions and provided a means to approximate the
expected power law of the energy distribution. Taken
together, these results solve the longstanding issues and
questions that have existed since Dehmelt first considered
this problem over forty years ago. We believe that these
results will be critical for the design and interpretation of
experiments in the rapidly growing field of hybrid atom-ion
physics [4–13].

We thank John Bollinger for guiding discussions. This
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0505 and NSF Grant No. PHY-1005453.
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