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In this Letter we consider spinless Fermi gases placed inside a cavity and study the critical strength
of a pumping field for driving a superradiance transition. We emphasize that the Fermi surface nesting
effect can strongly enhance the superradiance tendency. Around certain fillings, when the Fermi surface is
nearly nested with a relevant nesting momentum, the susceptibility of the system toward a checkboard
density-wave ordered state is greatly enhanced in comparison with a Bose gas with the same density,
because of which a much smaller (sometime even vanishingly small) critical pumping field strength can
give rise to superradiance. This effect leads to interesting reentrance behavior and a topologically distinct
structure in the phase diagram. Away from these fillings, the Pauli exclusion principle brings about the
dominant effect for which the critical pumping strength is lowered in the low-density regime and increased
in the high-density regime. These results open the prospect of studying the rich phenomena of degenerate
Fermi gases in a cavity.
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Recently, a series of experiments have studied a weakly
interacting degenerate Bose gas in a cavity [1,2] in which a
superradiance induced density-ordered superfluid phase [1]
and the softening of roton excitations in the vicinity of a
superradiance phase transition have been observed [2].
Studying degenerate quantum gases inside a cavity offers
new insights to many-body systems [3]. First, the cavity
field is a dynamical photon field rather than a classical laser
configuration; cavity photon modes affect the many-body
system as dynamical variables. For example, cavity pho-
tons can mediate effective long-range interactions between
atoms [4,5]; a multimode cavity can introduce frustration to
atoms that enhance quantum fluctuations [6]. Second, the
inevitable decay of cavity photons makes the system inter-
esting for studying nonequilibrium phenomena.
In free space without a cavity, superradiance has been

proposed theoretically for fermions [7,8] and subsequently
demonstrated experimentally [9]. So far, limited attention
has been paid to degenerate Fermi gases inside cavities
[10–12]. However, there is no fundamental difficulty in
realizing such a system experimentally. To stimulate exper-
imental efforts along this direction, it is therefore desirable
to theoretically investigate interesting physics in this setup.
In this work we shall start from the simplest case, i.e., spin-
less fermions, and show that nontrivial effects already exist.
In contrast to bosons, due to the Pauli exclusion principle,

a degenerate Fermi gas forms a Fermi sea, occupying a
collection of single particle states of the lowest energies.
Moreover, the system exhibits a Fermi surface (FS) where
“Fermi surface nesting” is the crucial feature responsible for
many collective phenomena in fermionic systems, such as
charge-density wave and spin-density wave [13], as well as
some strongly correlated unconventional superconductivity
[14]. FS nesting means that when a FS is shifted by a certain

momentum, a sizable portion of the shifted FS will
overlap with the original one. If a FS is perfectly nested,
particle-hole excitations of the nesting momentum cost
infinitesimally small energies and the FS becomes unstable
in the presence of infinitesimally small local repulsive
(attractive) interactions and reconstructions to be gapped
by spin-density (charge-density) wave order.
The purpose of this Letter is to point out that FS nesting

and the Pauli exclusion principle both have strong effects
on superradiance in a degenerate Fermi gas. Explicitly, we
show (i) For the one-dimensional case, perfectly nested
FS leads to a dramatic result that an infinitesimal pumping
field can induce superradiance when the nesting momen-
tum matches the wave-vector magnitude of the cavity field.
For the two-dimensional case, superradiance is greatly
enhanced close to certain fillings when the nesting momen-
tum matches the momentum transfer Q between the pump-
ing laser and the cavity field photons. In the nesting regime,
the phase diagram exhibits several interesting behaviors.
(ii) In the low-density regime, the occupation of different
single particle states due to the Pauli exclusion principle
enhances superradiance, while in the high-density regime,
superradiance is suppressed by the Pauli exclusion principle.
Model.—We consider spinless fermionic atoms trapped

inside a high-Q cavity. Two linearly polarized pumping
laser beams counterpropagate along ŷ perpendicular to the
main axis x̂ of the cavity, as schematically shown in Fig. 1.
The gas can be either one, two, or three dimensional. For
the one-dimensional case, we consider a strong confine-
ment potential in the yz plane that can prohibit the
momentum transfer along the ŷ direction during scattering
between atoms and pumping light; fermions can only move
along the direction of the cavity mode x̂, as shown in
Fig. 1a. For the two-dimensional case, the atoms’ motion
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along ẑ is frozen by tight confinement and fermions can
only move in the xy plane, as shown in Fig. 1b. The cavity
is fine-tuned such that only one mode has a frequency ωc
that is close to the frequency of pumping lasers ωp. Both
ωp and ωc are far off the resonance with respect to the
electronic transitions of the atoms so that we can adiabati-
cally eliminate the electronic excited states of the atoms,
and obtain the Hamiltonian (ℏ ¼ 1 throughout) [1,15]

Ĥ ¼
Z

ddrðψ̂†ðrÞĤ0ψ̂ðrÞÞ − Δcâ†â; (1)

Ĥ0 ¼ Ĥat þ ηðrÞðâ† þ âÞ þ UðrÞâ†â; (2)

Ĥat ¼
p2

2m
þ VðrÞ; (3)

where ψ̂ is the field operators for spinless fermion atoms
and â is the field operators for the cavity mode. VðrÞ and
UðrÞ are the optical potentials generated by the
pumping lasers and the cavity field, respectively, and
VðrÞ ¼ V0cos2ðk0yÞ, UðrÞ ¼ U0cos2ðk0xÞ with V0 ¼
Ω2

p=Δa and U0 ¼ g2=Δa. The interference between the
pumping lasers and the cavity field gives rise to ηðrÞ ¼
η0 cosðk0xÞ cosðk0yÞ with η0 ¼ gΩp=Δa. Here Δa is the
laser detuning with respect to the electronic exciting
energies of the atoms, Δc ¼ ωp − ωc is the cavity mode
detuning, Ωp is the strength of the pumping lasers, g is the
single-photon Rabi frequency of the cavity mode, and k0 is
the wave-vector magnitude of the pumping lasers and the
cavity mode. We define the recoil energy Er ¼ ℏ2k20=2m
for later use. In the following discussion, g, Δa, Δc,
and U0 are kept fixed, and superradiance is driven by
increasing the pumping field strength Ωp, which simulta-
neously increases η0 via η0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
U0V0

p
.

Method.—The weak leakage of electromagnetic fields
from the high-Q cavity leads to a small decay rate κ for the
cavity mode [1]. The mean field of the cavity mode
α ¼ hâi satisfies the equation of motion in a similar fashion
as the boson case [1]

i
∂α
∂t ¼ ð− ~Δc − iκÞαþ η0Θ; (4)

with the effective detuning ~Δc ¼ Δc − R
ddrUðrÞnðrÞ and

the fermion density order Θ ¼ R
ddrnðrÞηðrÞ=η0. The

fermion density function is nðrÞ ¼ hψ̂†ðrÞψ̂ðrÞi. Because
of the presence of the cavity decay term κ, the system is
generally in a nonequilibrium situation [1]. We seek a
steady state in which ∂α=∂t ¼ 0 and find

α ¼ η0Θ
~Δc þ iκ

: (5)

This steady state requirement fixes the relation between
α and Θ.
To determine the critical pumping strength for the

superradiance transition, we calculate the free energy by
the second-order perturbation theory. With the above mean-
field treatment for the cavity field and by integrating out
the rest fermion fields, we obtain the free energy to the
second order of α as

Fα ¼ −β−1 ln Zα ¼ − ~Δcα
�α − χηðαþ α�Þ2; (6)

and the susceptibility χη is given by

χη ¼ − 1

2β
Tr½G0ηðr0ÞG0ηðrÞ�≡ η20Nat

f
Er

; (7)

where f is the dimensionless susceptibility, Nat is the total
atom number, Tr includes the frequency summation, and
G−1

0 ¼ i∂t −Hat. Substituting Eq. (5) into the free energy
expression, Eq. (6), in the vicinity of the superradiance
transition, we obtain

Fα ¼ −
�

~Δc

~Δ2
c þ κ2

þ χη
4 ~Δ2

c

ð ~Δ2
c þ κ2Þ2

�
ðη0ΘÞ2: (8)

Across a superradiance transition, Θ spontaneously
evolves from zero to a finite value. Therefore, the transition
is determined by the sign change of the coefficient of Θ2 in
Eq. (8), which yields the critical value of η0:

ηcr0
ffiffiffiffiffiffiffi
Nat

p
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Δ2
c þ κ2

− ~Δc

s ffiffiffiffiffi
Er

f

s
: (9)

It is straightforward to show that in terms of the eigen-
functions ϕk and the eigenenergies ϵk of Ĥat,

f ¼ Er

η20Nat

X
kk0

����
Z

ddrϕ�
kðrÞϕk0 ðrÞηðrÞ

����
2 nFðϵkÞ
ϵk0 − ϵk

; (10)

with nF the Fermi distribution function. For the fermion
case, f depends on the atom density, the pumping field

(a)
x

y

(b)
x
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FIG. 1 (color online). Schematic of the experimental setup.
Arrows are pumping lasers along ŷ. Wiggly lines with arrows
represent cavity field along x̂. Panel (a) presents a one-
dimensional gas along x̂, and panel (b) presents a two-
dimensional gas in the xy plane with strong confinement along ẑ.
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strength, and the dimensionality of the atomic gas. For the
boson case, the critical value is also determined by Eq. (9),
and the difference is that in the expression for f, nFðϵkÞ in
Eq. (10) should be replaced by Natδk;0 at zero temperature,
where k ¼ 0 corresponds to the Bose condensed single
particle ground state. Thus, for the noninteracting boson
case, f is independent of atom density and f ≈ 1=2 for
the weak pumping field [1]. The magnitude of f determines
the easiness of inducing superradiance. The larger f is, the
smaller the critical pumping strength. We present the
numerical results for f at zero temperature based on
Eq. (10) in Fig. 2 for Fermi gases at different dimensions
and compare them with noninteracting Bose gases.
Low-density and high-density limits.—If the filling factor

ν≡ n=ðζkd0Þ, with ζ ¼ 2 (for d ¼ 1) and ζ ¼ 4 (for d ¼ 2,
3) for a d-dimensional Fermi gas of average density n, is
much smaller than one, the degenerate fermions mainly
occupy the lowest lying single particle states. At zero tem-
perature, in the limit ν → 0, one finds that f approaches the
same value for bosons and fermions [7,8,16]. And this
value increases as the lattice depth increases, which means
the lattice effect enhances the superradiance tendency, as

shown in Figs. 2(b) and (c). In fact, a similar effect has also
been found in resonance physics where the lattice effect
enhances the tendency ofmolecule formation [17,18].When
ν increases from zero, f for fermions becomes larger than
that for bosons, while the later remains unchanged due to its
independence of the atoms’ density. The increment of f for
fermions comes from the population of finite momentum
states, since some of the finite momentum states have a
smaller energy denominator in Eq. (10).
We also find that as ν increases to the high-density

regime with 2kF > jQj (Q ¼ ð�k0;�k0Þ for the two-
dimensional case and Q ¼ ð�k0;�k0; 0Þ for the three-
dimensional case) f for fermions will finally drop below
that for bosons. This is because when the Fermi surface is
large enough, for a certain number of occupied states with
momentum k, the states with momentum kþQ will
also be occupied and the Pauli exclusion principle blocks
the scattering between these states. The superradiance
tendency is suppressed accordingly.
Nesting effect.—The nesting effect can be best illustrated

in the one-dimensional case, where f can be calculated
analytically as (up to a constant [19])

f ¼ 1

8

k0
kF

ln

���� 2kF þ k0
2kF − k0

����; (11)

at zero temperature. As shown in Fig. 2(a), f diverges when
k0 ¼ 2kF, which means that an infinitesimally small pump-
ing field can lead to superradiance. The divergence is due to
the fact that in one dimension, FS contains only two points
and is generically nested with the nesting momentum 2kF.
The interaction mediated by cavity photons ∼ cosðk0xÞ
can only transfer a fixed momentum k0. Thus, only when
2kF matches k0, can infinitesimal cavity-mediated attraction
between fermions induce a density-wave order of fermions.
Finite temperature is expected to smear out the divergence of
f and result in a finite critical strength for the pumping field.
Generally a FS is not perfectly nested in dimensions

higher than one; it is more difficult to find a nested FS when
the dimensionality becomes higher. In the two-dimensional
case, there are still cases in which a sizable portion of
FS is nearly nested. When the nesting momentum roughly
matches Q, f will be largely increased although remains
finite. For the two-dimensional case, as shown in Fig. 2(c),
f as a function of ν displays two peaks in the regime
ν ≈ 0.5, though the exact locations of these peaks depend
on the pumping field strength. In Fig. 3, we plot the FS for
Ĥat at these peak positions. Indeed, we find that part of the
FS is well nested with the relevant momentum Q, which
proves that the nested FS is responsible for the significant
increasing of f in the two-dimensional case. Similarly, a
peak around ν ≈ 1=2 is found in the three-dimensional case,
as shown in Fig. 2(b).
Determining the phase diagram.—For bosons or

fermions of a given density in one dimension, f is

(a) (b)

(c) (d)

FIG. 2 (color online). (a)–(c) Dimensionless charge-density-
wave susceptibility f is plotted as a function of filling ν,
for the one-dimensional (a), three-dimensional (b), and two-
dimensional cases (c). f is defined in Eq. (7) and is related
to the critical pumping strength via Eq. (9). In (b) and (c),
different lines represent different pumping field strengths
V0=Er. FS1 and FS2 in (c) mark the place where corresponding
FSs are shown in Figs. 3(a) and (b), respectively. For comparison,
horizontal dashed lines represent f for the noninteracting boson
case with different pumping field strengths. (d) 1=f as a function
of V0=Er for various fillings ν. The dashed line represents
ð1=CÞV0=Er defined in Eq. (12).

PRL 112, 143004 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

143004-3



independent of V0=Er. The phase boundary Vcr
0 =Er as a

function of ~Δc=Er can be derived directly from Eq. 9 if
κ=Er and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0Nat=Er

p
are given. For fermions in higher

dimensions, f is also a function of V0=Er. To determine the
phase boundary one needs to solve the equation

Vcr
0

Er
¼ Cð ~Δc=ErÞ

fðVcr
0 =ErÞ

; (12)

where

CðxÞ ¼ 1

4

�
x2 þ ðκ=ErÞ2

−x
��

1

U0Nat=Er

�
: (13)

In Fig. 2(d), we plot 1=f as a function of V0=Er and a
straight line representing V0=ErCð ~Δc=ErÞ, whose crossing
marks the superradiance transition point.
In Fig. 4 we plot the phase diagram for different

densities; the curves are the boundary separating the normal

and the superradiance phases. For a fixed effective detuning
~Δc=Er, the critical pumping strength V0=Er is shown to
reach its minimum in the nesting regime ν ≈ 1=2. In other
words, there is a density-driven superradiance transition
and a reentrance behavior as shown in Fig. 4(b): The
system starting in the normal phase undergoes a transition
to the superradiance phase and comes back to the normal
phase as the density further increases. In addition, due to
the nonmonotonic behavior of 1=f for filling ν ≈ 1=2, for
certain fine-tuned κ=Er, the phase diagram can exhibit
topologically distinct behavior as shown in Fig. 4(c), where
an additional isolated island of the superradiance regime
exists in the phase diagram.
Final remark.—In this work we have revealed that many-

body effects have a much stronger impact on the super-
radiance of degenerate Fermi gases in a cavity, even for
spinless fermions and a single mode cavity. Though the
quantitative results we have shown are for zero temper-
ature, the enhancement of superradiance for fermions
compared to bosons is expected to maintain at finite
temperatures. Our results lay the base for further efforts
to understand more intriguing phenomena in this system,
for instance, by including the fluctuations of cavity modes,
and considering multiple cavity modes or interactions
between fermions of different spin degrees of freedom.
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Note added.—Recently, two other works addressing a
similar problem appeared [20,21].
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