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The quantum dynamics of the electromagnetic light mode of an optical cavity filled with a coherently
driven Fermi gas of ultracold atoms strongly depends on the geometry of the Fermi surface. Superradiant
light generation and self-organization of the atoms can be achieved at low pumping threshold due to
resonant atom-photon umklapp processes, where the fermions are scattered from one side of the Fermi
surface to the other by exchanging photon momenta. The cavity spectrum exhibits sidebands that, despite
strong atom-light coupling and cavity decay, retain narrow linewidth, due to absorptionless transparency
windows outside the atomic particle-hole continuum and the suppression of broadening and thermal
fluctuations in the collisionless Fermi gas.
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Introduction.—Lasing [1,2] and superradiance phenom-
ena are currently enjoying a renaissance as research topics
in atomic physics. Recent advances in quantum optical
experiments with ultracold atoms enable the exploration of
a new regime at ultralow temperatures in which quantum
effects of both the light and the atomic matter field become
important, atoms and confined photon fields are strongly
coupled, and the photon field is actually dynamical, playing
a much more active role than in optical lattice experiments.
In many-body cavity quantum electrodynamics, where

many ultracold atoms are placed in an optical resonator [3],
the role of the photon is dual. First, it mediates an
interaction between the atoms producing new phases of
matter, whose dynamics, in turn, backacts on the photon
field itself. Second, the photon output serves as a noninva-
sive probe of optical properties such as refraction and
absorption of the underlying atomic medium.
An important question is in how far favorable coherence

properties of the atomic medium can be imprinted onto the
light field. To that end, a recent string of experiments has
achieved superradiance [4] in which theN atoms collectively
interact with the light field: with Raman photons [5,6], with
momentum recoil in thermal and condensed Bose gases
[7–13], and with photon gases in optical cavities [14,15]. In
related superradiant lasers [16–20], the emitted intensity can
be amplified∼N2 while there is substantial∼1=N2 linewidth
narrowing, with potential technological applications for
precision spectroscopy and quantum metrology.
The purpose of this Letter is to pin down the consequences

of the Fermi surface in many-fermion cavity quantum
electrodynamics not available with the previously discussed
bosons or (effective) spins [21–47]. Motivated by near-time
experimental prospects to study superradiant phenomena
with fermionic atoms in a transversally driven optical cavity
(sketched in Fig. 1), we here provide a computation of the
steady-state phase diagrams for one- and two-dimensional

confinement of the Fermi gas as well as the cavity spectrum
for this system. Single-spin fermions are appealing as a
coherent optical medium since frequency shifts from colli-
sions are strongly suppressed, a feature also exploited in
optical clocks [48–50]. Optomechanics with fermions was
considered previously in Refs. [51,52], and glassy fermions
in multimode cavities were discussed in Ref. [53].
Key results.—The Fermi gas is generically closer to

superradiance threshold due to umklapp scattering events
between points on the Fermi surface transferring the two-
photon momentum Q at no energy cost. The density and
the confinement dimensionality of the Fermi gas drastically
affect available phase space volume for low energy
umklapp processes. Atomic self-organization, concomitant
with superradiance, occurs here as a dynamical Peierls
instability without a preformed, conservative lattice poten-
tial parallel to the cavity axis. In d ¼ 1, perfect nesting
between Q and kF strongly reduces the critical pump
strength towards a fermionic superradiant state, which can

FIG. 1 (color online). Left: Fermi sphere (red circle) of the
ultracold, atomic Fermi gas inside the mirrors of an optical cavity
(curved, blue) in combined position-momentum representation.
jkFj is the Fermi momentum and Q is the superposition of the
cavity momentum and the momentum of coherent drive laser with
amplitude Ω. Right: Level scheme employed for the superradiant
self-organization discussed here, with single-photon atom-cavity
Rabi coupling g0. Generalizing the level structure above to
an incoherent repumping scheme should enable superradiant
umklapp lasing [18–20].
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become fully insulating. In d ¼ 2, cavity-mediated Fermi
surface reconstruction leads to “pockets” of gapless exci-
tations similar to magnetic metals [54].
The cavity spectrum, instead of the usual broadened

polaritonic peaks, shows a broad continuumwith sharp edges
plus two perfectly narrow sidebands shown in Fig. 2.
Sufficiently close to the self-organization transition, the
sidebands appear in “absorptionless” transparency windows
(belowω=ER ≲ 0.6), and as such they remain perfectly sharp.
The underlying absorption and refractive properties of the
coherent atomic Fermi medium, shown in Fig. 3, are
determined by the imaginary and real parts of the particle-
hole continuum, respectively. Moreover, we expect the side-
bands to be robust against thermal noise, due to the absence
of collisions in the single-spin Fermi gas and the associated
reduced sensitivity to thermal fluctuations (especially in
interacting Bose superfluids, order parameter fluctuations
will strongly deplete the condensate fraction available for
recoil lasing); the far detuning between the internal atomic
transition and the cavity frequency also ensures that decay
from the excited atomic state is suppressed. Currently used
Fabry-Perot cavities with MHz decay rates are in the bad-
cavity limit compared to the “slow motion” of alkali atoms
with kHz kinetic energies, leading to a decoupling of the
photon decay and the collective dynamics of the atoms
[12,13,19,20]. Indeed, our results here are confirmed in a
nonequilibrium calculation [55].
Setup and formalism.—We consider N spinless fer-

mionic atoms with two internal electronic levels in the
setup of Fig. 1. The quantized excitations of the coupled
atoms plus driven cavity system will be described in terms
of the field operators ψ̂gje for the atoms in the internal
ground or excited state and the annihilation operator â for a
cavity photon [31]. The atomic operators obey fermionic

quantum statistics and fulfill the (anti)commutation relation
fψ̂ðrÞ; ψ̂†ðr0Þg ¼ δr;r0 . In a frame rotating with the fre-
quency ωp of the pump laser, the Hamiltonian Ĥ ¼ Ĥa þ
Ĥc þ Ĥajc þ Ĥajp contains four terms: Ĥc ¼ −Δcâ†â and

Ĥa ¼ −
Z

dr

�
ψ̂†
gðrÞ

�∇2

2m

�
ψ̂gðrÞ

þ ψ̂†
eðrÞ

�∇2

2m
þ Δa

�
ψ̂eðrÞ

�
;

Ĥajc ¼ −ig0
Z

drψ̂†
gðrÞηcðrÞâ†ψ̂eðrÞ þ H:c:;

Ĥajp ¼ −iΩ
Z

drψ̂†
gðrÞηpðrÞψ̂eðrÞ þ H:c: (1)

Here, Ĥa describes the kinetic energy of the atoms with
mass m moving around inside the cavity, with the excited
state detuning between the pump and the atomic resonance
Δa ¼ ωp − ωc. Δc ¼ ωp − ωc is the detuning between the
pump and the cavitymode andΩ is the pumpRabi frequency.
We operate in the standard regimewhere the atoms couple to
only a single excitation mode of the electromagnetic field of
the cavitywith single-photonRabi coupling g0. The functions
ηcðrÞ ¼ cosðQc · rÞ and ηpðrÞ ¼ cosðQp · rÞ [we choose
QcðpÞ ¼ QxðyÞx̂ðŷÞ below] contain the spatial structure of
the mode functions of the (standing-wave) cavity light field
and the pump laser, respectively.
We extend our recently developed effective action for-

malism [57] to fermionic quantum fields and to situations
with a spatially varying pump laser potential. We neglect
the spontaneous emission from the excited atomic level by
assuming that the detuning Δa be by far the largest energy
scale such that population of the excited level is suppressed.
This allows us to adiabatically eliminate the excited atomic
level and derive an effective action for the low-lying levels
coupled to the cavity (see Supplemental Material [60]). The
effective action is amendable to a saddle-point analysis at

FIG. 2 (color online). Cavity photon spectrum in one dimen-
sion. Left: Spectral function Eq. (2) in color scale. The narrow
features are actually sharp δ-function peaks, the lower of which
moves toward ω ¼ 0 for Ω → ΩD. Right: Spectral function at
fixed coupling close to threshold, Ω ¼ 0.98ΩD, for two different
densities. Black dashed curve: Perfectly nested case in which
the fermionic particle-hole continuum reaches down to zero
frequency and ΩD ¼ 0. Parameters are Δc ¼ −1.2ER,
Ng20=Δa ¼ −0.05ER, g0=Δa ¼ −0.1ER, T ¼ 0. Within the
particle-hole continuum there is “broadband” emission for a
range of frequencies; outside of the particle-hole continuum, the
linewidth remains narrow.
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FIG. 3 (color online). Absorption (imaginary part of the
particle-hole continuum, black box-shaped line) and refractive
properties (real part of the particle-hole continuum, blue double-
peaked line) of the coherent atomic Fermi medium in one
dimension at Ω ¼ 0.6ΩD. The lower sideband in Fig. 2 appears
in the absorptionless “transparency window” for ω=ER ≲ 0.6, for
which the imaginary part is identically zero since here kF ¼ 0.2Q
is away from perfect nesting. At perfect nesting Q ¼ 2kF, the
absorption reaches to ω ¼ 0. The optical properties of the atomic
Fermi medium can be tuned by the coherent drive Ω highlighting
connections to electromagnetically induced transparency [56].
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fixed density nψ ¼ N=Ld, as done in Ref. [57]. The
corresponding mean-field solution α ¼ hâi becomes exact
in the thermodynamic limit N, L → ∞, nψ ¼ const, yield-
ing the phase diagram as a function of the pump strength Ω,
the fermion density nψ, dimensionality d, and temperature T.
Self-organization for 1D confinement.—The phase dia-

gram for the d ¼ 1 case, when the fermionic atoms are
tightly confined in tubes parallel to the cavity axis so that
the two-photon momentum transfer Q ¼ Qc þQp ≃Qc,
is shown in Fig. 4. The critical pump strength ΩD, above
which the system is self-organized or superradiant, strongly
depends on the fermion density or, equivalently, on the
1D Fermi momentum k1DF ¼ πnψ . In particular, we notice a
strong suppression of ΩD when k1DF ≃Q=2. This condition
indeed implies that a cavity photon can scatter an atom
from the Fermi surface (for d ¼ 1 Fermi points) at very low
energy cost with a momentum transfer Q which inverts
the direction of the atomic motion (umklapp scattering).
For fermions in d ¼ 1, the system becomes unstable
towards superradiance even at infinitesimal pump strength
for T ¼ 0 and k1DF ¼ Q=2. The T ¼ 0 line in Fig. 4 goes
indeed to zero like 1= ln j1 −Q=2kFj−1, while as soon as a
small finite temperature (also potentially induced by cavity
decay) is present, ΩD stays finite. This is analogous to the
Peierls instability present in one-dimensional metals [58],
where it becomes energetically favorable for the electrons
to break the discrete translational symmetry by doubling
the lattice period so that the Fermi points get gapped out,
with the important difference that here the cavity generated

lattice does not reorganize but rather first appears due to the
instability. Reference [59] is a related proposal to simulate
Peierls physics with hybrid ultracold atom and ion systems.
Our system becomes insulating in the superradiant phase
for nearly commensurate densities k1DF ≃ jQ=2 (with j
integer), as is shown for j ¼ 1, 2 in Fig. 4. The superradiant
Peierls insulating regions are separated by crossover lines
from regions where the system shows superradiant charge
order but is still metallic, since the Fermi energy does not
lie within the band gap. In addition to measurements of the
cavity spectrum (see also below), the superradiant Peierls
insulator (SPI) and superradiant charge ordered Fermi
liquid (SCOFL) phases could be distinguished by radio
frequency spectroscopy of the atomic cloud. The Fermi
liquid (FL)-SCOFL transition is always continuous except
from a region around kF ≃Q, where the transition is first
order. The red shaded area in Fig. 4 shows the region where
the free energy has two local minima as a function of the
order parameter α. This hysteresis region appears for Ω
slightly lower than ΩD and ends exactly at ΩD, where the
free energy has only a single minimum at finite α,
corresponding to the jump in the cavity occupation.
Since the atoms couple to a single cavity mode extending
all over the cloud, there is no coexistence between the
normal and superradiant phase despite hysteresis.
Self-organization for 2 D confinement.—In two dimen-

sions the physics is richer since the spatial structure of the
pump laser cannot be neglected. This has two main effects:
(i) even in the normal phase, by increasing the pump
strength we deform the Fermi surface of the atoms inside
the pump lattice with vector Qp, and (ii) the density wave
in the superradiant phase has momentum Q ¼ Qc þQp,
corresponding to a checkerboard lattice with reciprocal

vector Q whose length is Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

x þQ2
y

q
[60]. The phase

diagram for different temperatures as a function of the
Fermi momentum along the Q direction (the relevant
nesting direction) calculated at the critical pump strength
kF;Q̂ðΩDÞ is presented in Fig. 5. As in the d ¼ 1 case, we
observe a suppression of ΩD for kF;Q̂ðΩDÞ≃Q=2, marked
by the vertical black dashed line in Fig. 5. The suppression
of ΩD is much weaker as compared to d ¼ 1 since perfect
nesting is absent. Again, the minimum in ΩD is at
kF;Q̂ðΩDÞ≃Q=2, where this time the Fermi momentum
depends on the pump strength due to the deformation of
the Fermi surface discussed in (i). In Fig. 5, the minimum
is not exactly at kF;Q̂ðΩDÞ ¼ Q=2 since T ≠ 0. In addition,
the self-organization transition in d ¼ 2 can correspond to
reconstruction of the Fermi surface for kF;Q̂ðΩDÞ > Q=2,
an example of which is given in the upper right-hand inset
of Fig. 5. By entering the self-organized phase, the atoms
change from a simply connected Fermi surface to one
consisting of separated closed surfaces delimiting zones
with occupied and empty states. The blue square-shaped
Fermi surface belongs to the first checkerboard lattice band,
while the red star-shaped surface belongs to the second
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FIG. 4 (color online). Phase diagram for a one-dimensional
Fermigas in anoptical cavity as a functionofFermi (kF) over cavity
(Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2mER
p

)momentum versus pump amplitudeΩ. Inset shows
gap opening at the Fermi points. Temperatures are kBT ¼ 0 (black
dashed line), kBT ¼ 0.01ER (blue solid line). At Q ¼ 2kF the
system is perfectly nested and Peierls reconstruction into a super-
radiant Peierls insulator (SPI) sets in at relatively small Ω. Away
from nesting the Z2 charge symmetry breaking leads to a super-
radiant charge-ordered Fermi liquid (SCOFL). The red shaded
area extending from the second-order transition line indicates
the hysteresis region preceding the first-order phase transition
from the Fermi liquid (FL) into the the SPI at kF=Q ¼ 1; there the
Fermi energy lies in the gap between the second and third cavity
generated bands. The remaining parameters are Δc ¼ −0.2ER,
Ng20=Δa ¼ −0.05ER, g0=Δa ¼ −0.1.
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higher band. The condition kF;Q̂ðΩDÞ > Q=2 implies that
the Fermi surface has to intersect the first Bragg plane of
the reciprocal checkerboard lattice [60]. These phases with
different Fermi surface topologies could be distinguished
by time-of-flight imaging of the atomic cloud.
In contrast to the one-dimensional case, in d ¼ 2 the

atomic medium is, therefore, always metallic in the super-
radiant phase. The order of the superradiant transition
depends on kF;Q̂ðΩDÞ and temperature. As can be seen from
Fig. 5, there is a large region where the transition is first order
and hysteresis is present (indicated by the shaded area). The
range of densities for which the transition is first order gets
smallerwith increasing temperature (see lower inset in Fig. 5).
In d ¼ 2, the Fermi momentum at Ω ¼ 0 reads jk2D

F j ¼ffiffiffiffiffiffiffiffiffiffiffi
4πnψ

p
and the cavity momentum is Qx ¼ 2π=λ, with λ an

optical wavelength, for example, ∼800 nm. For a degenerate
Fermi gas at densities around 1014–1015 m−2, the various
regimes discussed here are thus experimentally accessible.
Cavity spectrum for 1 D confinement.—We now turn to

the cavity spectrum (shown above in Fig. 2), which is as
well dramatically affected by the presence of a sharp Fermi
surface at low T. The cavity spectral function,

AðωÞ ¼ −2ðδc þ ωÞ2ImΣðωÞ
½δ2c − ω2 þ 2δcReΣðωÞ�2 þ ½2δcImΣðωÞ�2 ; (2)

with the shifted cavity detuning δc ¼ −Δc þ Ng20=2Δa,
describes how the spectral weight is distributed between
different frequencies under a weak probe but, being normal-
ized to 2π, does not contain information about the intensity.

The function ΣðωÞ ¼ −ðλ2=2nÞΠFðω;QÞ (shown in Fig. 3)
describes how a photon is dressed by atomic fluctuations: its
real part shifts the photon frequency while its imaginary part
gives rise to broadening. Here, λ ¼ Ωg0=Δa. We will focus
on the zero temperature case. Explicit formulas for the
particle-hole polarization function ΠFðω;QÞ are given in
the Supplemental Material [60]. For energies within
the particle-hole continuum, ðQ=kFÞ2 − 2Q=kF ≤ ω=ϵF ≤
ðQ=kFÞ2 þ 2Q=kF, the broadening of the photon spectrum is
determined by a frequency-independent constant

ImΣðωÞ1D ¼ −
λ2πkF
8ϵFQ

: (3)

This broadening (“Landau damping”) arises from real scat-
tering events between photon and atom where momentum
and energy are conservedω ¼ ϵkþQ − ϵk. Instead of normal-
mode split polariton peaks in the cavity spectrum [with AðωÞ
being the sum of two Lorentzians], Fig. 2 exhibits a broad
feature disappearing with a discontinuity for frequencies
out of the particle-hole continuum, where ImΣðωÞ ¼ 0.
Moreover, when the particle-hole fluctuations in the atomic
medium shift [through ReΣðωÞ] the cavity frequency outside
the particle-hole continuum, the cavity spectrum shows
sharp sidebands AðωÞ ¼ ½1þ δcReΣðω ¼ EÞ�πδðω − EÞ.
The absence of damping in the low frequency range is due
to the Pauli principle, which forbids scattering of a fermion
into an occupied state, while in the high frequency range
it is due to the sharpness of the Fermi surface, such that
suddenly no fermions are available for scattering above a
given threshold. In particular, the lower sideband is found
at the “soft-mode” energy E, which close to the critical point
is E≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2c þ 2δcReΣðω ¼ 0Þ
p

and goes to zero at the
critical pump strength ΩD. Close to perfect nesting
Q ¼ 2kF, see the right-hand panel of Fig. 2, the broad
spectral feature reaches down to ω ¼ 0, leaving no space
for a sharp soft mode.
Summary.—We considered the optical properties and

self-organization of a coherently driven Fermi gas strongly
coupled to the light field of an optical resonator. New Fermi
surface physics leads to superradiance and self-organization
at low pumping threshold as well as the appearance of
narrow sidebands in the cavity spectrum. Generalizations
of this work could lead to superradiant umklapp lasers as
well as new nonequilibrium phases of interacting fermions.
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Note added.—Recently, two other works addressing a
similar problem appeared [61,62].
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FIG. 5 (color online). Phase diagram for a two-dimensional
Fermi gas in an optical cavity for Qx ¼ Qy ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2mER

p
, kBT ¼

0.01ER (blue dashed line), kBT ¼ 0.05ER (orange dashed line),
and kBT ¼ 0.1ER (red dotted line). Lower inset: Hysteresis region.
The vertical line separates the two different superradiant regimes
with topologically trivial Fermi surface and reconstructed Fermi
surface, as illustrated in the two upper insets: left at kF;Q̂ðΩDÞ ¼
0.49Q, α ¼ 0.1, right at kF;Q̂ðΩDÞ ¼ 0.53Q, α ¼ 0.2. Here the
Fermi surface is shown in the repeated-zone scheme relative
to the Brillouin zone B ¼ ð−Qx=2 < kx < Qx=2;−Qy=2 <
ky < Qy=2Þ. Purple lines delimit “electron” pocketswith occupied
levels while blue lines delimit hole pockets with empty levels.
The vertical line separating the two superradiant phases is straight
only close to ΩD. The remaining parameters are as in Fig. 4.
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