
Fermionic Superradiance in a Transversely Pumped Optical Cavity

J. Keeling,1 M. J. Bhaseen,2 and B. D. Simons3
1SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom

2Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
3University of Cambridge, Cavendish Laboratory, Cambridge CB3 0HE, United Kingdom

(Received 10 September 2013; published 8 April 2014)

Following the experimental realization of Dicke superradiance in Bose gases coupled to cavity light
fields, we investigate the behavior of ultracold fermions in a transversely pumped cavity. We focus on the
equilibrium phase diagram of spinless fermions coupled to a single cavity mode and establish a zero
temperature transition to a superradiant state. In contrast to the bosonic case, Pauli blocking leads to lattice
commensuration effects that influence self-organization in the cavity light field. This includes a sequence of
discontinuous transitions with increasing atomic density and tricritical superradiance. We discuss the
implications for experiment.
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Introduction.—Experiments combining cold atomic
gases with cavity quantum electrodynamics have led to
pivotal developments in matter-light interaction. The use of
Bose-Einstein condensates (BECs) allows precise control
over the collective matter-light coupling, and permits
access to the strong coupling regime [1,2]. This may be
exploited for spectroscopy of many body systems [3–5],
and to induce light-mediated interactions.
Early theoretical work predicted that atoms in a

cavity undergo self-organization when pumped trans-
versely [6–8]. This was confirmed by experiments on
thermal clouds and recently on a BEC [9–11]. The latter
also established equivalence to the superradiance transition
in an effective Dicke model [12–17]. The recent advances
in optical cavities open the door to nonequilibrium and
strongly correlated matter-light phenomena, including
driven-dissipative phase transitions [18,19], Mott insulator
transitions in self-organized lattices [20,21], cavity opto-
mechanics [22], and bistability in ring cavities [23]. They
also provide a platform on which to explore frustrated spin
models and glassy behavior in multimode cavities [24–28].
For a review, see Ref. [29].
The experimental realization of superradiance in BECs

raises many questions regarding the possible behavior of
fermions in cavities. Recent investigations have considered
longitudinal pumping [30,31], cavity mediated pairing
[32], and synthetic gauge fields [33]. For earlier work
on the complementary phenomenon of free-space super-
radiance and collective atomic recoil lasing using ultracold
fermions, see Refs. [34–36]. In this Letter we focus on the
closest extension of recent experiments [10,11] by coupling
spinless fermions to a single mode of a transversely
pumped cavity. In contrast to dynamical superradiance in
free space, steady-state superradiance may exist. At high
temperatures, where both fermions and bosons exhibit
Maxwell-Boltzmann statistics, it is evident that fermions

will exhibit a superradiance transition, as observed for
thermal bosons [9]. However, at low temperatures the Bose
and Fermi gases are expected to behave differently and
numerous questions arise. Does the self-organization tran-
sition survive for degenerate fermions? How does com-
mensurability between the Fermi wave vector and the
self-consistent optical lattice affect self-organization? Do
new phases exist, and what characterizes the transitions?
Model.—Inspired by Refs. [9–11], we consider spinless

fermions coupled to a single mode of a cavity light field
(forming a standing wave in the x direction), and pumped
by a transverse laser (in the z direction); see inset of Fig. 1.
We assume that the pump frequency ωp is far detuned
from the atomic transition frequency ωa so that absorption
and consequent heating via spontaneous emission can be
neglected. After eliminating the excited states of the atoms
(see, e.g., Ref. [37]), one obtains an effective Hamiltonian
governing the interaction between the cavity light field and
the motional degrees of freedom:
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ĉ†kĉkþ2sqx

−
gΩ
4Δa

ðψ̂þ ψ̂†Þ
X
s;s0
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where Δa ≡ ωa − ωp is the difference between the atomic
transition frequency ωa and the pump frequency ωp, and s,
s0 ∈ �1 denote the forward and backward components of
the standing waves. Here, ĉk is an annihilation operator
for a spinless fermion with mass m and wave vector k, and
ψ̂ is a bosonic annihilation operator for cavity photons.
Equation (1) is written in the rotating frame of the pump
so ω≡ ωc − ωp is the cavity-pump detuning. To ensure
efficient scattering between the pump and the cavity, the
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cavity frequency ωc is assumed to be close to ωp. The
cavity and pump light fields thus have approximately equal
wavelengths with jqxj ¼ jqzj ¼ q. Scattering between the
pump and the cavity involves the cavity-atom coupling g,
and the pump strength Ω, and is described by the fourth
term in Eq. (1). The third (fifth) term corresponds to a
second-order process involving the absorption and emis-
sion of cavity (pump) photons. For bosons, there are limits
where one may truncate the number of k states; when trun-
cated to k ¼ ð0; 0Þ and k ∈ ð�q;�qÞ, the Hamiltonian
maps on to an effective Dicke model describing two-level
systems coupled to light [10,16,17,37]. For fermions, Pauli
blocking generally precludes truncation, and so we must
consider the higher k states.
In a “self-organized” state, the cavity light field develops

an expectation hψ̂i ≠ 0, and the superposition of the pump
and cavity fields forms a 2D lattice with reciprocal lattice
vector (q, q). We introduce dimensionless units by meas-
uring atomic energies in units of the recoil energy
ER ≡ ℏ2q2=2m. Wave vectors (and lengths) are measured
in units of the magnitude of the reciprocal lattice vectorffiffiffi
2

p
q so that the resulting Brillouin zone (BZ) has unit area.

We consider atoms confined to a 2D layer in the (x, z) plane
and thus define the filling fraction nF ≡ N=Nl as the
number of atoms per lattice site; Nl ¼ 2q2A=ð2πÞ2 for a
real space area A. From Eq. (1) it is natural to introduce
dimensionless pump and cavity fields via η2 ¼ Ω2=4ΔaER
and ϕ2 ¼ g2hψ̂i2=4ΔaER.
Equilibrium phase diagram.—We begin by determining

the equilibrium phase diagram for the Hamiltonian (1).
Although this neglects cavity losses, key features will
survive in this limit [10,11]. We treat the cavity mode in
mean-field theory, which is exact in the thermodynamic
limit N, A → ∞ [38] . Considering the dimensionless free-
energy density f ¼ F=ðERNlÞ, we find

f ¼ ~ωjϕj2 − ~β−1
Z
BZ

d2k
X
i

ln½1þ e−~βðϵðiÞk −μÞ� þ μnF; (2)

where ~ω≡ ωð4Δa=g2NlÞ is a dimensionless cavity-pump

detuning. Here, ϵðiÞk is the energy in the ith band, found by

diagonalizing the atomic part of Eq. (1). Both ϵðiÞk and μ are
in units of ER, and ~β≡ ER=kBT. To ensure that μ is
unambiguously defined, even for filled bands, we work at a
low nonzero temperature, kBT ¼ 0.05ER. Minimization of
f at fixed nF yields Fig. 1.
Figure 1 shows two fillings, characteristic of a partially

filled first band [Fig. 1(a), nF ¼ 0.5] and a partially filled
second band [Fig. 1(b), nF ¼ 1.5]. In both cases, two
phases exist. At low η there is a normal state with ϕ ¼ 0. At
large η, ϕ ≠ 0, and this state is labeled “superradiant” (SR)
by analogy with the Dicke model terminology [13–17].
It is also “self-organized” as the fermions are arranged in a
self-consistent optical lattice.
Landau theory.—As found in the bosonic case [10,11],

the normal-SR transition is second order at high η and ~ω.
However, for the partially filled first band, on decreasing η,
a tricritical point occurs beyond which the transition
becomes first order. This can be understood via a
Landau expansion, f ¼ f0 þ að ~ω;η; nFÞϕ2 þ bðη; nFÞϕ4þ
cðη; nFÞϕ6, where pump-cavity phase locking ensures
ϕ ∈ R; see the Supplemental Material [39]. Taking
c > 0 for stability, three types of behavior occur depending
on the value of b [40]. For b > 0, a continuous transition
occurs at a ¼ 0, while a first-order transition occurs at
a ¼ b2=4c when b < 0. These transitions meet at a
tricritical point at a ¼ b ¼ 0. In the vicinity of the tricritical
point, the critical exponent describing the onset of the
cavity field ϕ changes from β ¼ 1=2 to β ¼ 1=4. At low η,
bðη; nFÞ < 0, and so the boundary becomes first order
in Fig. 1(a).
The physical origin of this discontinuous transition is

reminiscent of the Larkin-Pikin mechanism [41], where
coupling to an additional degree of freedom drives a
transition first order. Here, the order parameter ϕ couples
to density waves of the atomic system. The linear coupling
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FIG. 1 (color online). Equilibrium phase diagram of fermions
in a transversely pumped cavity; see inset. As the pumping is
increased, there is a transition to a superradiant (SR) state, where
the fermions spontaneously “self-organize” in the self-consistent
light field. The panels correspond to partial filling of (a) the first
and (b) second bands of the emergent lattice. At large detuning
the cavity field (gray scale) grows continuously above a critical
pump field (solid blue line), while at smaller detuning the
transition is discontinuous (double red line). These first- and
second-order boundaries join differently at different fillings; for
nF ≲ 1 they meet at a tricritical point (circle), while at higher
fillings there is a critical end point (diamond). The first-order
boundary in (b) corresponds to a liquid-gas-type transition within
the SR phase. The unstable region ~ω < 2nF will be stabilized by
cavity loss; see text. The dashed line is the spinodal extension of
the continuous line.
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to the cosðx= ffiffiffi
2

p Þ cosðz= ffiffiffi
2

p Þ density wave described by
the fourth term in Eq. (1) yields a continuous transition.
However, the quadratic coupling to the cosð ffiffiffi

2
p

xÞ density
wave in the third term in Eq. (1) drives b < 0 at small η,
as follows from second-order perturbation theory. As we
discuss more fully in the Supplemental Material [39], such
first-order transitions also occur in the full description of
the bosonic problem, but are absent within the Dicke
approximation. Note that this mechanism is distinct from
the Brazovskii mechanism for driving the self-organization
transition first order in multimode cavities [24,25].
The behavior described thus far persists while only the

first band is filled. Richer behavior occurs when higher
bands start to be filled; see Fig. 1(b). Here, there is no
tricritical point and the second-order line terminates at a
critical end point [40]. The SR phase is now divided by a
first-order transition, separating high and low ϕ regions.
This is analogous to a liquid-gas transition, and the two
phases are connected by a trajectory at lower nF. Within
Landau theory this corresponds to terms beyond ϕ4 being
negative. We will return to the physical origin of this
transition later in the Letter.
Unstable regions.—As indicated in Fig. 1, when

~ω < 2nF, f is unbounded from below. This reflects the
form of f at large ϕ, when the atoms are trapped in deep
minima of the cavity optical lattice. Here, the leading
contribution to the atomic energy is ϵðiÞk ∼ −2ϕ2, and so
f ∼ ð ~ω − 2nFÞϕ2. The unstable region exists even at low
densities, where Pauli blocking can be ignored, and so
it is also relevant for bosons. Such a situation has been
discussed for bosons in Ref. [42]. However, as we argued
in Ref. [37], this instability will be replaced by dynamical
attractors in the presence of cavity losses.
Continuous phase boundaries.—Where the boundaries

are continuous, the η, nF dependence of the critical
detuning ~ω can be obtained from the vanishing quadratic
Landau coefficient. This has contributions from the first
and third terms in Eq. (1). Using second-order perturbation
theory, að ~ω; η; nFÞ ¼ ~ωþ χðη; nFÞ, where

χðη; nFÞ ¼ 4η2
Z
BZ

d2k
X
ij

nðϵðiÞk Þ jhu
ðiÞ
k jm1juðjÞk ij2
ϵðiÞk − ϵðjÞk

(3)

is a dimensionless atomic susceptibility. Here, ϵðiÞk and juðiÞk i
are the atomic energies and eigenstates evaluated in the
absence of the cavity field and nðϵÞ is the Fermi-Dirac
distribution. The pump-cavity scattering represented by
the third term in Eq. (1) corresponds tom1 ¼ 4cosðx= ffiffiffi

2
p Þ×

cosðz= ffiffiffi
2

p Þ in the position basis. At ϕ ¼ 0, the wave
functions hx; zjuðiÞk i factorize into plane waves in the x
(cavity) direction andMathieu functions [43] in the z (pump)
direction due to the pump lattice. The phase boundary occurs
at ~ω ¼ −χ; for parameters where the boundary turns first
order, this becomes the spinodal line [40], as shown by the
dashed lines in Fig. 1.

In the limits of low and high pump field, analytical
results for the boundaries may be obtained. For η → 0,
the Mathieu functions are plane waves and one finds
χ ¼ −4πη2ð1 − ΘðγÞ ffiffiffiffiffijγjp Þ, where ΘðγÞ is a Heaviside step
function and γ ¼ 1 − 4nF=π. The sharp threshold reflects
Pauli blocking: at high densities the susceptibility saturates
due to states deep within the Fermi surface (FS) not
contributing. The threshold occurs when nF ¼ πk2F ¼ π=4
or 2kF ¼ 1, i.e., when the FS diameter matches the
scattering wave vector represented by the third term in
Eq. (1). Note, however, that at low η the phase boundary is
actually first order, so ~ω ¼ −χ is a spinodal line. The η2

dependence is evident from the dashed line in Fig. 1. In the
low density and low pump field limit this corresponds
to ~ω ¼ 8η2nF, which is where the Dicke approximation
would erroneously predict a transition. As η → ∞, the
Mathieu functions are very localized so the dispersion in kz
is flat, while remaining quadratic in kx. The bands induced
by the pump are well separated and so only the lowest
band need be considered, yielding χ ¼ 16η2 ln jð1 − nFÞ=
ð1þ nFÞj. The divergence at nF ¼ 1 is a consequence of
FS nesting. For a flat z dispersion, the FS is delimited by
jkzj < 1=

ffiffiffi
2

p
, jkxj < nF=2

ffiffiffi
2

p
, and the cavity-pump scatter-

ing induces atomic scattering, kx → kx � 1=
ffiffiffi
2

p
, at a nest-

ing wave vector for nF ¼ 1. At finite η, the logarithmic
singularity is softened by imperfect nesting, but a peak
remains unless η ≪ 1. We will return to this below.
Liquid-gas transition.—As noted earlier, for partial

filling of the second (or higher) bands, a liquid-gas-type
transition exists. The origin of this transition is revealed by
the dispersion of the self-consistent bands with cavity field
ϕ, as shown in Fig. 2(a). The second band consists of
px- and pz-like orbitals. Which of these orbitals has lower
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FIG. 2 (color online). (a) Atomic bands versus ϕ for η ¼ 0.8.
When filling the second or higher bands, fðϕÞ is nonmonotonic,
thus allowing first-order liquid-gas-type transitions in the SR
phase. The bands are labeled by the symmetry of the Wannier
orbitals at large ϕ. Panels (b),(c) illustrate a distortion of the FS
on crossing the liquid-gas boundary; the values of ~ω are indicated
by crosses in Fig. 1(b). The FS delimits a partially filled second
band and is shown in a reduced zone scheme. Occupied states are
shaded.
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energy depends on the relative strength of ϕ and η which
control the lattice depth in the x and z directions, respec-
tively. When ϕ≃ η, the px- and pz-like bands cross. This
crossing leads to a kink in the atomic free energy at ϕ≃ η
and a maximum in fðϕÞ separating two minima. This yields
a discontinuous jump from a high field state (SRhi) with
ϕ≳ η to a low-field state (SRlo) with ϕ≲ η, accompanied
by a distortion of the FS; see Figs. 2(b) and 2(c). More
generally, the dispersion of the higher bands is nonmono-
tonic in ϕ, and further band crossings can occur. Filling
such bands leads to a nonmonotonic fðϕÞ, and hence
additional liquid-gas-type transitions.
Evolution with filling.—Further insight into the liquid-

gas transition is obtained from the phase diagram as a
function of nF at fixed η; see Fig. 3(a). There is a critical
point within the SR phase for nF ≳ 1, beyond which a
liquid-gas boundary extends. This corresponds to the point
at which a sufficient fraction of the second band is filled in
order to introduce the required local minima in fðϕÞ. Also
visible in Fig. 3(a) is a peak in the second-order boundary
~ω ¼ −χ near nF ¼ 1. As η increases, this evolves into the
logarithmic singularity of χ at nF ¼ 1, reflecting the FS
nesting discussed above. As shown in Figs. 3(b) and 3(c),
this peak survives over a range of temperatures T ≲ 0.2ER,
and with nonquadratic confinement. Combining such
trapping potentials [44] with optical cavities is an area
for experimental research.
Experimental considerations.—Thus far we have pro-

vided a detailed analysis of the equilibrium properties of
Eq. (1). However, as discussed in Refs. [37,45], a finite

cavity decay rate κ can significantly change the phase
diagram. In a driven-open system, the phase diagram is
found by determining the stable attractors of the dynamics,
not by minimizing the free energy. Nonetheless, extrema of
f correspond to stationary points of the dynamics in the
limit κ → 0. The open system thus inherits key features
from its equilibrium counterpart [10,11]. We next discuss
which features are robust to nonzero κ, and which aspects
require further investigation.
A feature that will survive when κ ≠ 0 is the boundary at

which the normal state becomes unstable. This can be
calculated by finding when the normal mode frequencies
have negative imaginary parts [46]. Following the approach
used for the bosonic system [16,37], the boundary of
stability is given by ð~κ2 þ ~ω2Þ= ~ω ¼ −χ, where χ is the
atomic susceptibility given by Eq. (3) and ~κ ≡ 4κΔa=g2Nl;
see Fig. 3(d). In the limit κ → 0 one recovers the equilib-
rium result ~ω ¼ −χ discussed above. This provides a direct
link between the equilibrium and nonequilibrium phase
boundaries, as found for the open Dicke model [10,16,17].
As shown in Fig. 3(d), the commensuration peak survives
over a range of ~κ [47] .
Unfortunately, a quantitative discussion of the fate of

the first-order boundaries is more challenging in the open
fermionic system. Nonetheless, the existence of competing
local minima in the equilibrium phase diagram suggests
that multiple dynamical attractors may survive in the open
limit. Likewise, determining the fate of the unstable region
when κ ≠ 0 is difficult because it hinges on the long-time
dynamics of the fermionic system. This could potentially
involve limit cycles, fixed points, and chaotic attractors
[46]. Indeed, the answer to the analogous question in the
Dicke model [37] demonstrates both superradiant phases
and limit cycles. It would be interesting to explore this in
more detail, both theoretically and experimentally.
Conclusions.—We have explored the phase diagram of

ultracold fermions in a transversely pumped cavity. In
contrast to a BEC, the interplay of the Fermi wave vector
with the wavelength of the cavity field leads to a rich
dependence on the filling fraction. We have established
distinct superradiance transitions whose character reflects
the impact of Pauli blocking and lattice commensuration.
Unlike the Dicke model, the phase boundary turns first
order at low pump field. In addition to signatures in the
cavity light field, the measurable consequences include FS
distortions and an enhanced susceptibility near unit filling.
This study provides a basis for future experimental and
theoretical research including the nature of dynamical
attractors in the driven-dissipative system, the impact of
fermion interactions, and the behavior in multimode
geometries.
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Note added.—Recently, two other works addressing a
similar problem appeared [48,49].
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