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The control of quantum systems with shaped laser pulses presents a paradox since the relative ease with
which solutions are discovered appears incompatible with the enormous variety of pulse shapes accessible
with a standard pulse shaper. Quantum landscape theory indicates that the relevant search dimensionality is
not dictated by the number of pulse shaper elements, but rather is related to the number of states
participating in the controlled dynamics. The actual dimensionality is encoded within the sensitivity of the
observed yield to all of the pulse shaper elements. To investigate this proposition, the Hessian matrix is
measured for controlled transitions amongst states of atomic rubidium, and its eigendecomposition reveals
a dimensionality consistent with that predicted by landscape theory. Additionally, this methodology
furnishes a low-dimensional picture that captures the essence of the light-matter interaction and the ensuing
system dynamics.
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The control of quantum systems with optimally shaped
laser pulses has proven remarkably effective at manipulat-
ing molecular dynamics in chemical, biological, and
material environments [1]. High-finesse quantum control
operates by managing the interference of multiple system
states through their coupling to a shaped temporal field.
The outcome of this light-matter interaction could inde-
pendently draw upon each resolvable temporal or spectral
field component, and the corresponding effort required to
search for such a field ostensibly grows exponentially with
the number of controllable elements. In practice, however,
the discovery of an efficacious field typically necessitates
only several thousand experimental evaluations irrespective
of the particular system, which is a conspicuously small
subset of the prodigious number of possible fields (e.g.,
[2–7]). Resolution of this paradox lies at the heart of
understanding how an optimal field communicates with
quantum systems and is paramount for extending control
techniques to complex systems of general interest. Toward
this end, quantum control landscape theory [8] predicts that
the true search space dimensionality is not commensurate
with the number of employed spectral elements, but is
rather related to the number of system states directly
participating in the controlled transition. The structure of
this reduced-dimensional space may be gleaned by observ-
ing the sensitivity of the control yield to all of the
parameters describing the pulse. If effective pulse shapes
can be rapidly assembled from a small set of fundamental
components, quantum control may find widespread adop-
tion in a variety of applications, including high-finesse
detection, material transformations, and chemical control.
This Letter details the extraction of a low-dimensional
control space for manipulating atomic excitation and, in
doing so, substantiates the prediction of quantum landscape
theory for a system of known dimension.

With an expanding repertoire of experimental control
demonstrations, considerable effort has focused on discov-
ering a natural set of reduced-dimensional control variables
as a way to more thoroughly understand the controlled
dynamics. One approach toward this goal is to examine the
fitness landscape Jð~xÞ, which is the control yield as a
function of the adjustable field parameters ~x [9,10]. The
fitness landscape provides an intuitive picture as to how
various components ~x of a shaped pulse synergetically
interact with a quantum system to optimize a process
[11–14]. A number of studies have turned to the high-
dimensional topology of these landscapes as a means to
reduce the search dimensionality. By examining the incre-
mental refinements in pulse structure as a learning algo-
rithm navigates the underlying landscape, dimensionality
reduction has been achieved with several approaches that
include utilizing multivariate statistics to monitor the
evolution of the pulse [15,16], exerting selection pressure
during the learning process [17–19], and applying post facto
statistical analysis to the algorithm trajectory [20,21].
Each of these methodologies, however, convolves

information retrieved about the fitness landscape with
the dynamics of a particular optimization algorithm.
Moreover, quantum landscape theory affirms that a rig-
orous connection between the search landscape and con-
trolled dynamics is only possible in the immediate vicinity
of the extrema. In particular, it is the landscape curvature
that carries all of the information necessary to characterize
the light-matter interaction and succeeding system dynam-
ics [10]. In what follows, the landscape curvature is
empirically measured and used to validate a fundamental
theorem about the landscape itself.
The fitness landscape search dimensionality is tacitly

taken as the number of independent control directions to
which the target yield is sensitive. Such sensitivity
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information is naturally revealed by the critical topology of
the fitness landscape. Toward this end, the fitness landscape
in the neighborhood of an extremum ~x0 is well approxi-
mated by the local Hessian H, which is the matrix of
landscape second derivatives: Jð~x0 þ ~xÞ≃ Jðx0Þ þ
1
2
~xtHj~x0~x [9]. A measurement of this matrix thus provides

a well-defined entry point for understanding the intricacies
of an arbitrarily high-dimensional fitness search landscape
and establishing whether its true dimensionality equals the
number of employed pulse shaper elements or rather is a
lower value as assessed by landscape theory. It is important
to stress that the Hessian is not obtained with a perturbation
expansion about a null field, but rather a differential
modification about the optimal field ~x0. Thus, following
the application of ~x, the system continues to evolve in the
same dynamical regime as with the optimal field, which
may include strong field effects.
Quality, noise-robust second-order derivatives are

obtained with statistical moments built up from a local
sampling of the fitness landscape [22]. Consider a random
sampling about an extremum ~x0 where the variates ~x
are drawn from statistically independent, symmetric prob-
ability distributions, i.e., Pð~xÞ ¼ pðx1Þpðx2Þ…pðxDÞ and
pðxiÞ ¼ pð−xiÞ. In the case of Gaussian sampling, i.e.,
pðxiÞ ¼ N ð0; σ2Þ, the Hessian is well approximated by a
yield-weighted correlation matrix:

Hij ¼
∂2J

∂xi∂xj
�
�
�
�
~x0

≃ hxixj½Jð~x0 þ ~xÞ − hJi�i
σ4

þ σ2ϵij; (1)

where the error ϵij implicit to this method consists of
fourth-order derivative terms (see the Supplemental
Material [23]). Given a narrow sampling distribution
(i.e., σ → 0), the correlation matrix approaches the true
Hessian H.
When considering transitions amongst pure system

states, quantum landscape theory predicts a Hessian rank
(i.e., number of meaningful uncoupled search directions) of
at most 2N − 2 at a fitness maximum, where N is the
number of resolvable system states directly participating in
the controlled transition. Conversely, the Hessian rank at a
fitness minimum is expected to be independent of N and
has a value no larger than 2 [9,10]. At either landscape
extremum, the Hessian eigenvectors associated with the
nonzero eigenvalues encapsulate the most salient features
of the spectral variables. Considering that pulse shapes are
typically constructed with upwards of ∼100 independent
spectral amplitude or phase values, the Hessian matrix for a
prototypical control process, which might involve transi-
tions amongst several electronic or vibrational states
(N ≲ 10), is expected to be exceedingly sparse and exhibit
a large null space.
In order to validate this prediction, the Hessian is directly

measured at both the fitness minima and maxima for

two-photon electronic transitions of atomic rubidium.
Rubidium possesses two independently accessible path-
ways from the ground 5S state to the target 5D state [24],
and spectral phase shaping is utilized to both maximize and
minimize the transition probability to the 5D state [25]. The
retrieved curvature at these extrema is directly relatable to
the known atomic structure. Importantly, the strategy for
the measurement of the landscape curvature is general, and
an atomic system consisting of a small number of states is
considered solely to enable a well-defined comparison to
theory.
Laser pulses from a Ti:sapphire oscillator centered

at 780 nm and with a bandwidth Δλ ¼ 47 nm (FWHM)
are phase modulated with 80 independent pixels
(∼1.2 nm=pixel resolution) using a liquid-crystal pulse
shaper. These linearly polarized pulses are focused to a
spot diameter of 20 μm in a 25 mm quartz Rb vapor cell
maintained at 90 °C. The pulses induce 5S → 5P → 5D
electronic transitions, and the bandwidth provides suffi-
cient spectral coverage to activate both resonant pathways
[Fig. 1(a)] to the 5D state. Population transferred into
the 5D states rapidly undergoes relaxation to 6P states.

FIG. 1 (color). Broadband femtosecond excitation of rubidium
may exploit two distinct spectral pathways to populate the 5D
states (a). A scan of a π-phase step across the bandwidth
(b) identifies the four resolvable system states depicted in (a).
Sampling in the immediate vicinity of an optimum (c) is used to
construct a correlation matrix that approximates the underlying
Hessian. The reconstructed Hessian matrix at the landscape
maximum (d) reveals couplings corresponding to the two
excitation pathways illustrated in (a). The gray lines correspond
to the transition frequencies depicted in (a).
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The 80 MHz pulse train from the oscillator is modulated at
1 kHz with an optical chopper and the resultant 6P → 5S
fluorescence is imaged onto a photomultiplier tube in a
direction orthogonal to the incident beam and lock-in
detected.
Second-order perturbation theory shows that the prob-

ability amplitude adðtÞ of the 5D electronic state at a time
much longer than the duration of the pulse is adðþ∞Þ ∝R∞−∞ dωðEðΩÞEðΩds −ΩÞ=ωps − ωÞ, where EðΩÞ is the
complex spectral amplitude of the shaped pulse, Ω ¼
ω − ω0, and Ωds ¼ ωds − 2ω0 [26]. This transition ampli-
tude experiences a π-phase shift between frequencies above
and below a resonant intermediate frequency ωps. For an
unshaped pulse, a destructive quantum interference results
for photon pairs where one member is higher in frequency
and the other lower than this intermediate transition
frequency. However, if a π-phase shift is imprinted onto
the field EðΩÞ at either ωps or ωds − ωps, the phase shift
acquired by the system is negated and constructive inter-
ference is achieved in the 5D state. Accordingly, an
increase in the fluorescence signal while a π-phase step
is scanned across the spectral bandwidth is indicative of an
intermediate transition, and such a scan [Fig. 1(b)] reveals
that the present configuration resolves four discrete system
states (N ¼ 4) with population simultaneously traveling
through both resonant pathways to the target 5D state.
Following each optimization, a random sampling of the

landscape in the immediate vicinity of the optimum is
conducted with 80 individual spectral phase variables.
Although the variates are drawn from distributions with
identical sampling widths (i.e., σ ¼ 0.025 · 2π), the yield
deviations at the landscape maximum, minimum, and about
the transform-limited (TL) pulse exhibit considerable
differences in robustness [Fig. 1(c)]. Following ∼3 × 104

random samplings, the Hessian matrix at the landscape
maximum is reconstructed according to Eq. (1) [Fig. 1(d)]
and exhibits structure at each of the four resonant wave-
lengths (diagonal elements) as well as the intermediate
couplings. These peaks indicate that the 5D state is
populated through known level couplings [27].
Since the yield-weighted correlation is a statistical

moment-based technique, the individual elements of the
reconstructed Hessian are expected to exhibit 1=

ffiffiffiffiffi
M

p
convergence, where M is the number of locally sampled
points on the fitness landscape. As such, the Hessian
spectrum may be examined as the sample size M is
increased as seen in Fig. 2(a) for the Hessian matrix about
the landscape maximum. Two classes of eigenvalues are
discernible. The first group, which contains the prepon-
derance of the collection, converges toward a mean value of
zero. The second group consists of six eigenvalues that
converge toward nonzero values. In the limit of infinite
sampling, the extrapolated spectra at the landscape maxi-
mum and minimum are shown in Fig. 2(b) (see the
Supplemental Material [23]). The Hessian is exceedingly

sparse at the two extrema, and in both cases, the retrieved
rank agrees with that predicted by quantum landscape
theory for a Hilbert state dimension of N ¼ 4 [9,10].
Hessian eigenvectors corresponding to these extrapolated
eigenvalues are depicted in Fig. 3.
The three most yield-sensitive control directions at the

landscape maximum (i.e., vectors 78—80 of Fig. 3) are
dominated by the 5S → 5P3=2 → 5D transition pathway
(components i and ii). This is due to the larger transition
dipole moments associated with this pathway and the fact
that the spectral amplitude is centered around this route.
The subsequent three directions at the maximum (i.e.,
vectors 75—77) are largely associated with the alternative
5S → 5P1=2 → 5D pathway (components iii and iv).
These two pathways are not independent, however, and
the simultaneous presence of both transitions is evident in
eigenvectors 76 and 77. Conversely, the most efficient
ascent from the landscape minimum makes independent
use of both resonant pathways (Fig. 3). Rapid yield increase
is associated with the 5S → 5P3=2 → 5D pathway (com-
ponents i and ii), which is consistent with it also being the
most sensitive direction at the maximum.
These eigenvectors also furnish a well-defined, reduced

dimensional basis. The yield variations corresponding to
landscape trajectories taken in the direction of these
eigenvectors are shown in Fig. 4. At the landscape
maximum, the observed yield variations of the leading
six eigenvectors [Fig. 4(a)] agrees with the extrapolated
eigenvalue ordering presented in Fig. 2(b). Small
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FIG. 2 (color online). (a) Convergence behavior for mean
Hessian eigenvalues at the landscape maximum as the sample
size M increases. Six eigenvalues (red) are distinguishable from
the bulk (black) that converge toward a value of zero. (b) The
extrapolated Hessian spectra at the landscape maximum (red) and
minimum (blue) possess six and two nonzero eigenvalues,
respectively, which is consistent with the predictions of landscape
theory.
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displacements of ∥Δ~ϕi∥ reveal symmetric yield variations.
These eigenvectors also provide a near one-dimensional
pathway between the global minimum and maximum,
which is likely explained by the similarity of the principal
eigenvectors at the landscape extrema as seen in Fig. 3. For
comparison, the Hessian matrix is also measured in the

immediate vicinity of the TL pulse (i.e., ~ϕ0 ¼ 0), and
trajectories along its two largest and smallest eigenvectors
are shown in Fig. 4(b). Since the gradient is not zero at this
location, the yield variations are no longer symmetric.
Likewise, movement originating at the landscape minimum
is illustrated in Fig. 4(c). These trajectories are also in
agreement with the Hessian eigenvalue spectrum and

confirm that the 5S → 5P3=2 → 5D resonant pathway
provides the most rapid ascent to the target 5D eigenstate.
An eigenvector selected from the control null space [black
points in Figs. 4(a) and 4(c)] validates the relative yield
insensitivity for movement in this direction.
The Hessian furnishes an effective model of disturbances

that originate at the landscape maximum. As such, the role
of a specific wavelength in the control process may be
investigated by removing its contribution from the Hessian
matrix. If the deactivation of a given wavelength changes
the number of states participating in the transition, land-
scape theory dictates that the Hessian rank must adjust
accordingly. For different configurations of deleted wave-
lengths, the observed rank contracts to a value in accor-
dance with that predicted from landscape theory (see the
Supplemental Material [23]).
Away from the critical structure, sensitivity information

is embedded in the landscape gradient rather than the
Hessian, and the number of nonzero Hessian eigenvalues is
not rigorously relatable to the quantum system. As a result,
a basis constructed from the Hessian at landscape positions
other than at the extrema has no connection with the system
dimensionality N. In this situation, the search dimension-
ality is dictated by the number of functions necessary to
reconstruct the gradient in a chosen basis. In practice, an
a priori basis selection reflective of the landscape structure
is generally not evident. However, theoretical analysis
shows that the gradient may also be expressed with
2N − 2 specific basis functions at all positions on the
fitness landscape [28]. Consequently, the search dimen-
sionality at any particular point on the landscape will be the
same as that discovered at the extrema. This is consistent
with the quasiglobal extent of the extrema eigenvectors
as seen in Fig. 4, and renders them an effective basis
elsewhere on the landscape.
It is important to stress that the Hessian rank prediction

does not depend upon the strength of the light-matter
coupling, and situations may arise in which the retrieved

FIG. 3 (color online). Hessian eigenvectors corresponding to
nonzero eigenvalues at the landscape maximum (top) and
minimum (bottom). These eigenvectors reveal the most yield-
sensitive control directions at their respective locations, and each
eigenvector coordinates movement of all pulse shaper pixels.
The four known resonant wavelengths of atomic rubidium are
indicated as colored bars.

FIG. 4 (color online). Trajectories through spectral phase space at the landscape maximum (a), about the TL pulse (b), and at the

landscape minimum (c). Trajectories assume the form ~ϕtraj
i ðγÞ ¼ ~ϕ0 þ γ~ϕi, where ~ϕ0 is either an optimal phase [panels (a) and (c)] or

zero phase [panel (b)], and ~ϕi is the ith phase eigenvector of the Hessian. The Euclidean distance through phase space is

∥Δ~ϕi∥ ¼ ∥~ϕtraj
i ðγÞ − ~ϕ0∥ ¼ γ. In panels (a) and (c), the colors correspond to the eigenvectors of Fig. 3.

PRL 112, 143001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

143001-4



search dimensionality is not smaller than the original search
space. Strong-field processes, including multiphoton tran-
sitions, are facilitated by the collection of all nonresonant
states that are dipole coupled to the states of interest.
Accordingly, the number of states N contributing to the
nonresonant transition is exceedingly large, and the
Hessian rank is predisposed to equal the number of
available pulse shaper elements [29]. Conversely, a few
level system nonresonantly coupled to other states should
display a continuous Hessian spectrum along with several
discrete lines. In either situation, the spectral form of the
Hessian should reveal the nature of the connections linking
the initial and final states, and therefore provides important
input for modeling the control process.
In conclusion, whereas quantum control optimizations

outwardly appear to proceed in exceedingly high dimen-
sions, the actual dimensionality is related to the number of
involved system states, a number which has the potential to
be quite small. Consequently, evolutionary algorithms are
able to efficiently and rapidly navigate these spaces to
discover capable pulse shapes. Knowledge of the true
effective dynamic dimensionality should enable construc-
tion of simplified models describing the light-matter
interaction, and such models will prove especially valuable
for understanding the dynamics of complex control proc-
esses. The present observation of a dimensionality con-
sistent with that predicted by quantum landscape theory
provides the first experimental corroboration of the emerg-
ing theory and reinforces its positive projections for the
capabilities of quantum control.
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