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For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in
particular to discriminate between the minimal Higgs sector realized in the standard model (SM) and its
most commonly studied extension, the minimal supersymmetric standard model (MSSM). The measured
mass value, having already reached the level of a precision observable with an experimental accuracy of
about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs
boson, Mh, can directly be predicted from the other parameters of the model. The accuracy of this
prediction should at least match the one of the experimental result. The relatively high mass value of about
126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We
improve the prediction for Mh in the MSSM by combining the existing fixed-order result, comprising the
full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and
subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a
high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the
way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the
code FEYNHIGGS.
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Introduction.—After the spectacular discovery of a
signal in the Higgs-boson searches at the LHC by
ATLAS and CMS [1,2], the exploration of the properties
of the observed particle is meanwhile in full swing. In
particular, the observation in the γγ and the ZZð�Þ → 4l
channels has made it possible to determine its mass with
already a remarkable precision. Currently, the combined
mass measurement from ATLAS is 125.5� 0.2� 0.6 GeV
[3], and the one from CMS is 125.7� 0.3� 0.3 GeV [4].
The other properties that have been determined so far (with
significantly lower accuracy) are compatible with the
minimal realization of the Higgs sector within the standard
model (SM) [5], but a large variety of other interpretations
is possible as well, corresponding to very different under-
lying physics. While within the SM the Higgs-boson mass
is just a free parameter, in theories beyond the standard
model (BSM) the mass of the particle that is identified with
the signal at about 126 GeV can often be directly predicted,
providing an important test of the model. The most popular
BSMmodel is the minimal supersymmetric standard model
(MSSM) [6], whose Higgs sector consists of two scalar
doublets accommodating five physical Higgs bosons. In
lowest order these are the light and heavy CP-even h and
H, the CP-odd A, and the charged Higgs bosons H�.
The parameters characterizing theMSSMHiggs sector at

lowest order are the gauge couplings, the mass of the CP-
odd Higgs boson, MA, and tan β≡ v2=v1, the ratio of the

two vacuum expectation values. Accordingly, all other
masses and mixing angles can be predicted in terms of
those parameters, leading to the famous tree-level upper
bound for the mass of the light CP-even Higgs boson,
Mh ≤ MZ, determined by the massMZ of the Z boson. This
tree-level upper bound, which arises from the gauge sector,
receives large corrections from the Yukawa sector of the
theory, which can amount up toOð50%Þ (depending on the
model parameters) upon incorporating the full one-loop
and the dominant two-loop contributions [7]. The predic-
tion for the light CP-even Higgs-boson mass in the MSSM
is affected by two kinds of theoretical uncertainties, namely
parametric uncertainties induced by the experimental errors
of the input parameters, and intrinsic theoretical uncertain-
ties that are due to unknown higher-order corrections.
Concerning the SM input parameters, the dominant source
of parametric uncertainty is the experimental error on the
top-quark mass mt. Very roughly, the impact of the
experimental error on mt on the prediction for Mh scales
like δMpara;mt

h =δmexp
t ∼ 1 [8]. As a consequence, high-

precision top physics providing an accuracy on mt much
below the GeV level is a crucial ingredient for precision
physics in the Higgs sector [8]. Concerning the intrinsic
theoretical uncertainties caused by unknown higher-order
corrections, an overall estimate of δMintr

h ∼ 3 GeV has been
given in Refs. [7,9] [the more recent inclusion of the
leading Oðαtα2sÞ three-loop corrections [10] has slightly
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reduced this estimated uncertainty by few Oð100 MeVÞ],
while it was pointed out that a more detailed estimate needs
to take into account the dependence on the considered
parameter region of the model. In particular, the uncertainty
of this fixed-order prediction is expected to be much larger
for scalar top masses in the multi-TeV range. This region of
the parameter space has received considerable attention
recently, partly because of the relatively high value of
Mh ≈ 126 GeV, which generically requires either large top
squark masses or large mixing in the scalar top sector, and
partly because of the limits from searches for supersym-
metric (SUSY) particles at the LHC. While within the
general MSSM the lighter scalar superpartner of the top
quark is allowed to be relatively light (down to values even
as low as mt), both with respect to the direct searches and
with respect to the prediction for Mh (see, e.g., Ref. [11]),
the situation is different in more constrained models. For
instance, global fits in the constrained minimal super-
symmetric standard model (CMSSM) prefer scalar top
masses in the multi-TeV range [12,13].
Here we present a significantly improved prediction for

the mass of the light CP-even Higgs boson in the MSSM,
which is expected to have an important impact on the
phenomenology in the region of large squark masses and
on its confrontation with the experimental results.
Improved prediction for Mh.—In the MSSM with real

parameters (we restrict to this case for simplicity; for the
treatment of complex parameters see Refs. [14,15] and
references therein), using the Feynman diagrammatic (FD)
approach, the higher-order corrected CP-even Higgs boson
masses are derived by finding the poles of the (h, H)-
propagator matrix. The inverse of this matrix is given
by −i×

�p2 −m2
h;tr þ Σ̂hhðp2Þ Σ̂hHðp2Þ
Σ̂hHðp2Þ p2 −m2

H;tr þ Σ̂HHðp2Þ

�
; (1)

where mh;H;tr denote the tree-level masses, and
Σ̂hh;HH;hHðp2Þ are the renormalized Higgs boson self-
energies evaluated at the squared external momentum p2

[for the computation of the leading contributions to those
self-energies it is convenient to use the basis of the fields
ϕ1, ϕ2, which are related to h, H via the (tree-level) mix-
ing angle α: h ¼ − sin αϕ1 þ cos αϕ2, H ¼ cos αϕ1þ
sin αϕ2]. The status of higher-order corrections to these
self-energies is quite advanced. The complete one-loop
result within the MSSM is known [16,17]. The by far
dominant one-loop contribution is the OðαtÞ term due to
top quark and top squark loops (αt ≡ h2t =ð4πÞ, ht being the
top-quark Yukawa coupling). The computation of the two-
loop corrections has meanwhile reached a stage where all
the presumably (sub)dominant contributions are available,
see Ref. [7] and references therein. The public code
FEYNHIGGS [7,14,18,19] includes all of the above correc-
tions, where the on-shell (OS) scheme for the

renormalization of the scalar quark sector has been used
(another public code, based on the renormalization group
(RG) improved effective potential, is CPSUPERH [20]). A
full two-loop effective potential calculation (supplemented
by the momentum dependence for the leading pieces and
the leading three-loop corrections) has been published [21].
However, no computer code is publicly available. Most
recently another leading three-loop calculation at Oðαtα2sÞ
became available (based on a D̄R or a “hybrid” renorm-
alization scheme for the scalar top sector), where the
numerical evaluation depends on the various SUSY mass
hierarchies [10], resulting in the code H3M (which adds the
three-loop corrections to the FEYNHIGGS result).
We report here on an improved prediction for Mh where

we combine the fixed-order result obtained in the OS
scheme with an all-order resummation of the leading and
subleading contributions from the scalar top sector. We
have obtained the latter from an analysis of the renorm-
alization group equations (RGEs) at the two-loop level
[22]. Assuming a common mass scale MS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffim~t1m~t2

p
(m~t1;2 denote the two scalar top masses, and MS ≫ MZ)
for all relevant SUSY mass parameters, the quartic Higgs
coupling λ can be evolved via SM RGEs from MS to the
scale Q (we choose Q ¼ mt in the following) where M2

h is
to be evaluated (see, for instance, Ref. [23] and references
therein)

M2
h ¼ 2λðmtÞv2: (2)

Here v ∼ 174 GeV denotes the vacuum expectation value
of the SM. Three coupled RGEs are relevant for this
evolution, the ones for λ, ht, and gs [the strong coupling
constant, αs ¼ g2s=ð4πÞ]. Since SM RGEs are used, the
relevant parameters are given in the M̄S scheme. We
incorporate the one-loop threshold corrections to λðMSÞ
as given in Ref. [23], with xt ¼ Xt=MS, ht ¼ htðMSÞ,

λðMSÞ ¼ ð3h4t Þ=ð8π2Þx2t ½1 − 1=12x2t �; (3)

where as mentioned above Xt is an M̄S parameter.
Equation (3) ensures that Eq. (2) consists of the “pure
loop correction” that will be denoted ðΔM2

hÞRGE below.
Using RGEs at two-loop order [22], including fermionic
contributions from the top sector only, leads to a prediction
for the corrections to M2

h including leading and subleading
logarithmic contributions Ln and Lðn−1Þ at n-loop order
[L≡ lnðMS=mtÞ], originating from the top quark and top
squark sector of the MSSM. We have obtained both
analytic solutions of the RGEs up to the seven-loop level
as well as a numerical solution incorporating the leading
and subleading logarithmic contributions up to all orders.
In a similar way in Ref. [24] the leading logarithms at three-
and four-loop order have been evaluated analytically.
Concerning the combination of the higher-order loga-

rithmic contributions obtained from solving the RGEs with
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the fixed-order FD result implemented in FEYNHIGGS

comprising corrections up to the two-loop level in the
OS scheme, we have used the parametrization of the FD
result in terms of the running top-quark mass at the scale
mt, m̄t ¼ mpole

t =½1þ 4=ð3πÞαsðmpole
t Þ − 1=ð2πÞαtðmpole

t Þ�,
where mpole

t denotes the top-quark pole mass. Avoiding
double counting of the logarithmic contributions up to the
two-loop level and consistently taking into account the
different schemes employed in the FD and the RGE
approach, the correction ΔM2

h takes the form

ΔM2
h ¼ ðΔM2

hÞRGEðXM̄S
t Þ − ðΔM2

hÞFD;LL1;LL2ðXOS
t Þ;

M2
h ¼ ðM2

hÞFD þ ΔM2
h: (4)

Here ðM2
hÞFD denotes the fixed-order FD result,

ðΔM2
hÞFD;LL1;LL2 are the logarithmic contributions up to

the two-loop level obtained with the FD approach in the OS
scheme, while ðΔM2

hÞRGE are the leading and subleading
logarithmic contributions (either up to a certain loop order
or summed to all orders) obtained in the RGE approach, as
evaluated via Eq. (2). In all terms of Eq. (4) the top-quark
mass is parametrized in terms of m̄t; the relation between
XM̄S
t and XOS

t is given by

XM̄S
t ¼ XOS

t ½1þ 2Lðαs=π − ð3αtÞ=ð16πÞÞ� (5)

up to nonlogarithmic terms, and there are no logarithmic
contributions in the relation between MM̄S

S and MOS
S .

Since the higher-order corrections beyond two-loop
order have been derived under the assumption MA≫MZ,
to a good approximation these corrections can be incorpo-
rated as a shift in the prediction for the ϕ2ϕ2 self-energy
(where ΔM2

h enters with a coefficient 1= sin
2 β). In this way

the new higher-order contributions enter not only the
prediction for Mh, but also all other Higgs sector observ-
ables that are evaluated in FEYNHIGGS. The latest version
of the code, FEYNHIGGS 2.10.0, which is available at
FEYNHIGGS.DE, contains those improved predictions as well
as a refined estimate of the theoretical uncertainties from
unknown higher-order corrections. Taking into account the
leading and subleading logarithmic contributions in higher
orders reduces the uncertainty of the remaining unknown
higher-order corrections. Accordingly, the estimate of the
uncertainties arising from corrections beyond two-loop
order in the top quark or top squark sector is adjusted such
that the impact of replacing the running top-quark mass by
the pole mass (see Ref. [7]) is evaluated only for the
nonlogarithmic corrections rather than for the full two-loop
contributions implemented in FEYNHIGGS. Further refine-
ments of theRGE resummed result are possible, in particular
extending the result to the case of a large splitting between
the left- and right-handed soft SUSY-breaking terms in the
scalar top sector [25] and to the region of small values ofMA
(close to MZ) as well as including the corresponding

contributions from the (s)bottom sector. We leave those
refinements for future work.
Numerical analysis.—In this section we briefly analyze

the phenomenological implications of the improved Mh
prediction for large top squark mass scales, as evaluated
with FEYNHIGGS 2.10.0. The upper plot of Fig. 1 showsMh
as a function of MS for Xt ¼ 0 and Xt=MS ¼ 2 (which
corresponds to the minimum and the maximum value ofMh
as a function of Xt=MS, respectively; here and in the
following Xt denotes XOS

t ). The other parameters are
MA ¼ M2 ¼ μ ¼ 1000 GeV, m~g ¼ 1600 GeV [M2 is the
SU(2) gaugino mass term, μ the Higgsino mass parameter,
and m~g the gluino mass], and tan β ¼ 10. The plot shows
for the two values of Xt=MS the fixed-order FD result
containing corrections up to the two-loop level (labeled as
“FH295,” which refers to the previous version of the code
FEYNHIGGS) as well as the latter result supplemented with
the analytic solution of the RGEs up to the three-loop,…,
seven-loop level (labeled as “3-loop,”� � �,“7-loop”). The
curve labeled as “LLþ NLL” represents our full result
where the FD contribution is supplemented by the leading
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FIG. 1 (color online). Upper plot: Mh as a function of MS for
Xt ¼ 0 (solid) and Xt=MS ¼ 2 (dashed). The full result
(“LLþ NLL”) is compared with results containing the loga-
rithmic contributions up to the three-loop,…, seven-loop level
and with the fixed-order FD result (“FH295”). Lower plot:
comparison of FEYNHIGGS (red) with H3M (blue). In green we
show the FEYNHIGGS three-loop result at Oðαtα2sÞ (full) as
dashed (solid) line.
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and next-to-leading logarithms summed to all orders. One
can see that the impact of the higher-order logarithmic
contributions is relatively small for MS ¼ Oð1 TeVÞ,
while large differences between the fixed-order result
and the improved results occur for large values of MS.
The three-loop logarithmic contribution is found to have
the largest impact in this context, but for MS ≳
2500ð6000Þ GeV for Xt=MS ¼ 2ð0Þ also contributions
beyond three-loop are important. A convergence of the
higher-order logarithmic contributions towards the full
resummed result is visible. At MS ¼ 20 TeV the differ-
ence between the seven-loop result and the full resummed
result is around 900ð200Þ MeV for Xt=MS ¼ 2ð0Þ. The
corresponding deviations stay below 100 MeV for
MS ≲ 10 TeV. The plot furthermore shows that for MS ≈
10 TeV (and the value of tan β ¼ 10 chosen here) a
predicted value of Mh of about 126 GeV is obtained even
for the case of vanishing mixing in the scalar top sector
(Xt ¼ 0). Since the predicted value of Mh grows further
with increasing MS it becomes apparent that the mea-
sured mass of the observed signal, when interpreted as
Mh, can be used (within the current experimental and
theoretical uncertainties) to derive an upper bound [very
roughly of Oð1000 TeVÞ] on the mass scale MS in the
scalar top sector, see also Ref. [26].
In the lower plot of Fig. 1 we compare our result with the

one based on the code H3M [10] using a CMSSM scenario
with m0¼m1=2¼200���15000GeV, A0 ¼ 0, tan β ¼ 10,
and μ > 0. The spectra were generated with SOFTSUSY
3.3.10 [27]. The H3M result (blue line) is based on the
FEYNHIGGS result up to the two-loop order and incorpo-
rates the Oðαtα2sÞ corrections containing also nonlogarith-
mic contributions. Besides our result where FEYNHIGGS is
supplemented by the leading and subleading logarithmic
corrections to all orders (red line) we also show the
expansion of our result up to the three-loop level (green
solid line), containing at this level the L3 and L2 terms, and
the result restricting the contributions at the three-loop level
to the ones of Oðαtα2sÞ (green dashed). We find that the
latter result agrees rather well with H3M, with maximal
deviations of Oð1 GeVÞ for MS ≲ 10 TeV. The observed
deviations can be attributed to the L1 and L0 terms
contained in H3M, to the various SUSY mass hierarchies
taken into account in H3M, and to the different renormal-
ization schemes employed. However, one can see that the
three-loop contributions beyond the Oðαtα2sÞ terms, i.e.,
corrections of Oðα2t αs; α3t Þ that are not contained in H3M,
have a sizable effect giving rise to a (downward) shift inMh
by ∼5 GeV for MS ¼ 10 TeV. The corrections beyond the
three-loop order yield an additional shift of about 2 GeV for
MS ¼ 10 TeV, in accordance with our analysis above.
Larger changes are found forMS > 10 TeV. Also shown is
the current experimental value of the Higgs boson mass,
demonstrating the relevance of the new corrections with
respect to a determination of MS.

In summary, we have obtained an improved prediction
for the light CP-even Higgs boson mass in the MSSM by
combining the FD result at the one- and two-loop level with
an all-order resummation of the leading and subleading
logarithmic contributions from the top quark or top squark
sector obtained from solving the two-loop RGEs. Particular
care has been taken to consistently match these two
different types of corrections. The result, providing the
most precise prediction for Mh in the presence of large
masses of the scalar partners of the top quark, has been
implemented into the public code FEYNHIGGS. We have
found a sizable effect of the higher-order logarithmic
contributions for MS ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffim~t1m~t2

p ≳ 2 TeV, which grows
with increasing MS. In comparison with H3M, which
contains the Oðαtα2sÞ corrections to Mh, we find that
additional three-loop corrections of Oðα2t αs; α2t Þ and also
higher-loop corrections are both important for a preciseMh
prediction, amounting to effects of ∼7 GeV for MS ¼
10 TeV in our example. Finally, we have shown that for
sufficiently highMS the predicted values ofMh reach about
126 GeVeven for vanishing mixing in the scalar top sector.
As a consequence, even higher MS values are disfavoured
by the measured mass value of the Higgs signal.
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