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We investigate some aspects of two-flavor QCD with mu ≠ md at low energy, using the leading order
chiral perturbation theory including anomaly effects. While nothing special happens atmu ¼ 0 for the fixed
md ≠ 0, the neutral pion mass becomes zero at two critical values of mu, between which the neutral pion
field condenses, leading to a spontaneously CP broken phase, the so-called Dashen phase. We also show
that the “topological susceptibility” in the chiral perturbation theory diverges at these two critical points.
We briefly discuss a possibility thatmu ¼ 0 can be defined by the vanishing the “topological susceptibility.
We finally analyze the case of mu ¼ md ¼ m with θ ¼ π, which is equivalent to mu ¼ −md ¼ −m with
θ ¼ 0 by the chiral rotation. In this case, the η condensation occurs at small m, violating the CP symmetry
spontaneously. Deep in the η condensation phase, three pions become Nambu-Goldstone bosons, but they
show unorthodox behavior at small m that m2

π ¼ Oðm2Þ, which, however, is shown to be consistent with
the chiral Ward-Takahashi identities.
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Introduction.—One of possible solutions to the strong
CP problem is “massless up quark,” where the θ term in
QCD can be rotated away by the chiral rotation of up quark
without affecting other part of the QCD action. This
solution, unfortunately, seems to be ruled out by results
from lattice QCD simulations [1].
In a series of papers [2–6], however, one of the present

authors has argued that a concept of “massless up quark” is
ill-defined if other quarks such as a down quark are all
massive, since no symmetry can guarantee masslessness
of up quark in this situation due to the chiral anomaly.
In addition, it has been also argued that a neutral pion
becomes massless at some negative value of up quark mass
for the positive down quark mass fixed, and beyond that
point, the neutral pion field condenses, forming a sponta-
neous CP breaking phase, so-called a Dashen phase [7].
Furthermore, at the phase boundary, the topological sus-
ceptibility is claimed to diverge due to the massless neutral
pion, while it may become zero at the would-be “massless
up quark” point.
The purpose of this Letter is to investigate above

properties of QCD with nondegenerate quarks in more
detail, using the chiral perturbation theory (ChPT) with the
effect of anomaly included as the determinant term. For
simplicity, we consider the Nf ¼ 2 case with mu ≠ md, but
a generalization to an arbitrary number of Nf is straightfor-
ward with a small modification. Our analysis explicitly
demonstrates the above-mentioned properties such as an
absence of any singularity at mu ¼ 0 and the existence of
the Dashen phase with the appearance of a massless pion at
the phase boundaries. We further apply our analysis to the
case of mu ¼ md ¼ m with θ ¼ π, which is equivalent to

mu ¼ −md ¼ −m with θ ¼ 0 by the chiral rotation. We
show that, while η condensation occurs, violating the CP
symmetry spontaneously, three pions become Nambu-
Goldstone (NG) bosons at m ¼ 0 deep in the η condensa-
tion phase. We also show a unorthodox behavior at smallm
that m2

π ¼ Oðm2Þ, which is indeed shown to be consistent
with the chiral Ward-Takahashi identities (WTI).
Phase structure, masses, and topological susceptibility.—

The theory we consider in this Letter is given by

L ¼ f2

2
trð∂μU∂μU†Þ − 1

2
trðM†U þ U†MÞ

−
Δ
2
ðdetU þ detU†Þ; (1)

where f is the pion decay constant, M is a quark mass
matrix, and Δ is a positive constant giving an additional
mass to an eta meson. Differences between an ordinary
ChPT and the above theory we consider are the presence of
the determinant term [8], which breaks Uð1Þ axial sym-
metry, thus representing the anomaly effect, and field U ∈
UðNfÞ instead ofU ∈ SUðNfÞ. We here ignore detU terms
with derivatives for simplicity, since they do not change
our conclusions. For Nf ¼ 2, without a loss of generality,
the mass term is taken as

M ¼ eiθ
�
mu 0

0 md

�
≡ eiθ2B

�
m0u 0

0 m0d

�
; (2)

where B is related to the magnitude of the chiral condensate
at the massless limit of the positive degenerate u, d quark
masses, thus is positive and mass independent, m0u;0d are
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bare quark masses, and θ represents the θ parameter in
QCD. We consider that any explicit F ~F term in the action
has been rotated into the mass matrix. In the most of our
analysis, we take θ ¼ 0, but an extension of our analysis
to θ ≠ 0 is straightforward.
Let us determine the vacuum structure of the theory at

mu ≠ md. Minimizing the action with

UðxÞ ¼ U0 ¼ eiφ0ei
P

3

a¼1
τaφa ; (3)

we obtain the phase structure given in Fig. 1, which is
symmetric with respect to mþ ≡mu þmd ¼ 0 axis and
m− ≡md −mu ¼ 0 axis, separately. The former symmetry
is implied by the chiral rotation that U → eiπτ

1=2Ueiπτ
1=2

(ψ → eiπγ5τ
1=2ψ for the quark), while the latter by the vector

rotation that U → eiπτ
1=2Ue−iπτ

1=2 (ψ → eiπτ
1=2ψ ) [13].

In phase A (white), U0 ¼ 12×2 (upper right) or U0 ¼
−12×2 (lower left), while U0 ¼ τ3 (lower right) or U0 ¼
−τ3 (upper left) in phase C [shaded in light gray (red)].
In phase B [shaded in gray (blue)], we have a nontrivial
minimum with

sin2ðφ3Þ ¼
ðmd −muÞ2fðmu þmdÞ2Δ2 −m2

um2
dg

4m3
um3

d

; (4)

sin2ðφ0Þ ¼
ðmu þmdÞ2Δ2 −m2

um2
d

4mumdΔ2
; (5)

which breaks CP symmetry spontaneously, since hπ0i ¼
trτ3ðU0 −U†

0Þ=ð2iÞ ¼ 2 cosðφ0Þ sinðφ3Þ and hηi ¼ trðU0−
U†

0Þ=ð2iÞ ¼ 2 sinðφ0Þ cosðφ3Þ. This phase, where the
neutral pion and the eta fields condense, corresponds to

the Dashen phase. The spontaneous CP breaking second-
order phase transition occurs at the boundaries of the
Dashen phase: Lines between phase A and phase B, on
which sin2φ3 ¼ sin2φ0 ¼ 0, are defined by ðmd þmuÞΔþ
mdmu ¼ 0 (a line aa0) and ðmd þmuÞΔ −mdmu ¼ 0

(a line bb0), while those between B and C, on which
sin2φ3 ¼ sin2φ0 ¼ 1, are given by ðmd −muÞΔþmdmu ¼
0 (a line ab) and ðmd −muÞΔ −mdmu ¼ 0 (a line a0b0).
Note that sin2 φ3 ¼ 1 also on a mþ ¼ 0 line.
We next calculate pseudoscalar (PS) meson masses

in each phase. Expanding UðxÞ around U0 as UðxÞ ¼
U0eiΠðxÞ=f with

ΠðxÞ ¼
 ηðxÞþπ0ðxÞffiffi

2
p π−ðxÞ

πþðxÞ ηðxÞþπ0ðxÞffiffi
2

p

!
; (6)

the mass term is given by

LM ¼ mþð~φÞ
4f2

fη2ðxÞ þ π20ðxÞ þ 2πþðxÞπ−ðxÞg

þ δm
2f2

η2ðxÞ −m−ð~φÞ
2f2

ηðxÞπ0ðxÞ; (7)

where m�ð~φÞ¼m�cosðφ0Þcosðφ3Þþm∓ sinðφ0Þsinðφ3Þ
with δm ¼ 2Δ cosð2φ0Þ. While the charged meson
mass mπ� is simply given by m2

π� ¼ mþð~φÞ=ð2f2Þ, mass
eigenstates,�

~π0ðxÞ
~ηðxÞ

�
¼ 1ffiffiffiffiffiffi

2X
p

�
X1=2
þ π0ðxÞ þ X1=2

− ηðxÞ
X1=2
− π0ðxÞ − X1=2

þ ηðxÞ

�
; (8)

have

m2
~π0
¼ 1

2f2
½mþð~φÞ þ δm − X�; (9)

m2
~η ¼

1

2f2
½mþð~φÞ þ δmþ X�; (10)

where X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m−ð~φÞ2 þ δm2

p
and X� ¼ X � δm. We here

choose ~π0 and ~η such that m2
~π0
≤ m2

~η. It is then easy to
see m2

~π0
≤ m2

π� ≤ m2
~η.

By plugging φ0 and φ3 into the above formula, we obtain
meson masses in each phase. Here we show that m2

~π0
¼ 0

at all phase boundaries, to demonstrate that the phase
transition is indeed of second order. In phase A, we have

m2
~π0
¼ 1

2f2

h
jmþj þ 2Δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

− þ 4Δ
q i

; (11)

which becomes zero at ðmd þmuÞΔþmdmu ¼ 0 (on aa0)
and at ðmd þmuÞΔ −mdmu ¼ 0 (on bb0). Note that
nothing special happens at mu ¼ 0 (a massless up quark)

at md ≠ 0 as m2
~π0
¼ ðjmdj þ 2Δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

d þ 4Δ
q

Þ=ð2f2Þ. In
phase C, we obtain

FIG. 1 (color online). Phase structure inmu-md plain, where the
CP breaking Dashen phase are shaded in gray (blue), while the
CP preserving phase with U0 ¼ τ3 (lower right) or U0 ¼ −τ3
(upper left) are shaded in light gray (red).
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m2
~π0
¼ 1

2f2

h
jm−j − 2Δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ þ 4Δ

q i
; (12)

m2
~π0
¼ 0 at ðmd −muÞΔþmdmu ¼ 0 (on ab) and at ðmd −

muÞΔ −mdmu ¼ 0 (on a0b0). In addition, it is easy to check
that the massless condition for ~π0 that mþð~φÞ þ δm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m−ð~φÞ2 þ δm2

p
in phase B can be satisfied only on all

boundaries of phase B.
So far, we have shown three claims in Refs. [2–4,6] that

(1) the Dashen phase with spontaneous CP breaking by the
pion condensate exists in nondegenerate two-flavor QCD,
(2) the massless neutral pion appears at the boundaries
of the Dashen phase, and (3) nothing special happens at
mu ¼ 0 except at md ¼ 0.
We now consider the relation between the topological

susceptibility andmu in the ChPT. To define the topological
susceptibility in ChPT, let us consider the chiral U(1) WTI
given by

hf∂μA0
μðxÞ þ trMðU†ðxÞ −UðxÞÞ − 2NfqðxÞgOðyÞi

¼ δð4Þðx − yÞhδ0OðyÞi; (13)

where Aμ ¼ f2trfU†ðxÞ∂μUðxÞ −UðxÞ∂U†ðxÞg is the
U(1) axial current, O and δ0O are an arbitrary operator
and its infinitesimal local axial U(1) rotation, respectively,
and 2NfqðxÞ≡ ΔfdetUðxÞ − detU†ðxÞg corresponds to
the topological charge density. Taking OðyÞ ¼ qðyÞ and
integrating over x, we define the topological susceptibility
in the ChPT through WTI as

2Nfχ ≡
Z

d4xhf∂μA0
μðxÞ þ trMðU†ðxÞ − UðxÞÞgqðyÞi;

¼ Δ2

4

Z
d4xhqðxÞqðyÞi þ Δ

2
hdetUðxÞ þ detU†ðxÞi;

(14)

where the second term comes from δ0qðxÞ in ChPT,
which is absent in QCD, but represents an effect of the
contact term of qðxÞqðyÞ in ChPT. The leading order in
ChPT gives

2Nfχ ¼ −
4Δ2mþð~φÞ

mþð~φÞ2 −m−ð~φÞ2 þ 2mþð~φÞδm
þ Δ: (15)

At mu ¼ 0, we have mþð~φÞ ¼ m−ð~φÞ ¼ jmdj and
δm ¼ 2Δ, so that

2Nfχ ¼ −4Δ2jmdj=ð4jmdjΔÞ þ Δ ¼ 0; (16)

which confirms the statement that (4) χ ¼ 0 at mu ¼ 0.
Since the denominator of χ is proportional to m2

~π0
×m2

~η,

χ → −∞ on all phase boundaries since m2
~π0
¼ 0 and

mþð~φÞ > 0, which again confirms the statement that
(5) χ negatively diverges at the phase boundaries where
the neutral pion becomes massless.
We have confirmed the five statements in Refs. [2–4,6],

(1)–(5) in the above, by the ChPT analysis. In addition, we
have found a new CP preserving phase, phase C, which
has U0 ¼ �τ3 instead of U0 ¼ �12×2 of phase A. Since
phase C occurs at rather heavy quark masses such that
mu;d ¼ 2Bm0

u;d ¼ OðΔÞ, however, the leading-order ChPT
analysis may not be reliable for phase C. Indeed, phase C
seems to disappear if ðlog detUÞ2 is employed instead of
detU. Other properties, (1)–(5), on the other hand, are robust,
since they already occur near the origin (mu ¼ md ¼ 0)
in the mu −md plain and they survive even if ðlog detUÞ2
is used.
Property (4) suggests an interesting possibility that one

can define mu ¼ 0 at md ≠ 0 in two-flavor QCD from a
condition that χ ¼ 0. This is different from the standard
statement that the effect of θ term is rotated away at
mu ¼ 0. We instead define mu ¼ 0 from χ ¼ 0, which is
equivalent to an absence of the θ dependence if higher-
order cumulants of topological charge fluctuations are all
absent. A question we may have is whether or not χ ¼ 0 is a
well-defined condition. Although hqðxÞqðyÞi, and thus χ,
are notoriously ambiguous due to the short distance
divergences, several nonperturbative methods have been
proposed and used to calculate χ in lattice QCD [14–16].
As already discussed in Refs. [2–4,6], however, the value of
χ, and thus the χ ¼ 0 condition, depends on its definition at
finite lattice spacing (cutoff). Although one might naively
expect any ambiguity in χ to disappears in the continuum
limit, we must check a uniqueness of χ explicitly in lattice
QCD calculations by demonstrating that χ from two
different definitions but at same physical parameters agree
in the continuum limit. If the uniqueness of χ can be
established, one should calculate χ at the physical point of
1þ 1þ 1 flavor QCD in the continuum limit. If χ ≠ 0 in
the continuum limit, the solution to the U(1) problem by the
massless up quark ( χ ¼ 0 in our definition) is ruled out.
Degenerate two-flavor QCD at θ ¼ π.—In the rem-

ainder of this Letter, as an application of our analysis,
we consider the two-flavor QCD with mu ¼ md ¼ m and
θ ¼ π, which is equivalent to the two-flavor QCD with
mu ¼ −md but θ ¼ 0. In both systems, we have a SU(2)
symmetry generated by fτ1;τ2;τ3g for the former or
fτ1γ5; τ2γ5; τ3g for the latter. We here give results for the
former case, but a reinterpretation of results in the latter
case is straightforward.
The vacuum is given by φ3 ¼ 0 and

cosφ0 ¼
8<
:

1; 2Δ ≤ m
m
2Δ ; −2Δ < m < 2Δ
−1; m ≤ −2Δ

; (17)

which leads to
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hψ̄iγ5ψi ¼
(
0; m2 ≥ 4Δ2

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − m2

4Δ2

q
; m2 < 4Δ2

; (18)

hψ̄ψi ¼
8<
:

2; 2Δ ≤ m
m
Δ ; −2Δ < m < 2Δ
−2; m ≤ −2Δ

; (19)

showing the spontaneous CP symmetry breaking at
m2 < 4Δ2. Note that hψ̄ψi2 þ hψ̄iγ5ψi2 ¼ 4 at all m.
PS meson masses are calculated as

m2
π ¼ m2

π� ¼ m2
π0 ¼

( 1
2f2 2jmj; m2 ≥ 4Δ2

1
2f2

m2

Δ ; m2 < 4Δ2
; (20)

m2
η ¼

( 1
2f2 ½2jmj − 4Δ�; m2 ≥ 4Δ2

1
2f2

4Δ2−m2

Δ ; m2 < 4Δ2
; (21)

where η becomes massless at the phase boundaries at
m2 ¼ 4Δ2, showing that η is the massless mode associated
with the spontaneous CP symmetry breaking phase
transition, while three pion become massless Nambu-
Goldstone modes at m ¼ 0. Figure 2 represents these
behaviors.
As mentioned before, although ChPTanalysis around the

phase transition points at m2 ¼ 4Δ2 may not be reliable
[17], we can trust the results near m ¼ 0 that the CP
symmetry is spontaneously broken by the η condensation
in the degenerate two-flavor QCD with θ ¼ π and three
pions become massless NG bosons at m ¼ 0. Pion masses,
however, behaves as m2

π ¼ m2=ð2f2ΔÞ near m ¼ 0, con-
trary to the orthodox PCAC relation that m2

π ¼ jmj=ð2f2Þ
[18]. Let us show that this unorthodox relation can be
explained by the WTI. The integrated WTI for the non-
singlet chiral rotation with τ3 and O ¼ trτ3ðU† −UÞ reads

m
Z

d4xtrτ3ðU† −UÞðxÞtrτ3ðU† −UÞðyÞi

¼ −2htrðU þ U†ÞðyÞi; (22)

which leads to

m2
π0 ¼

m
f2

cosφ0 ¼
m
f2

m
2Δ

: (23)

This tells us that one m explicitly comes from the WTI, the
other m from the VEV of ψ̄ψ , giving the unorthodox
relation,

m2
π ¼

m2

2f2Δ
: (24)

It is interesting and challenging to confirm this prediction
by lattice QCD simulations with θ ¼ π, since the weight
factor eiπQ in the path integral becomes negative for odd
integer Q. Furthermore, this new dynamics of non-Abelian
gauge theories with fermions might become useful for
some particle phenomenologies in the future.
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