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We introduce a simple model for an engine based on the Nernst effect. In the presence of a magnetic
field, a vertical heat current can drive a horizontal particle current against a chemical potential. For a
microscopic model invoking classical particle trajectories subject to the Lorentz force, we prove a universal
bound 3 − 2

ffiffiffi
2

p ≃ 0.172 for the ratio between the maximum efficiency and the Carnot efficiency. This
bound, as the slightly lower one 1=6 for efficiency at maximum power, can indeed be saturated for a large
magnetic field and small fugacity.
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Introduction.—The Nernst effect describes the emer-
gence of an electrical voltage perpendicular to a heat
current traversing an isotropic conductor in the presence
of a constant magnetic field [1]. However, while Seebeck-
based devices, for which the heat and the particle current
are coupled without a magnetic field, have been the subject
of intensive research efforts during the last decades [2–5],
only a few attempts were made to utilize the Nernst effect
for power generation more than 50 years ago [6–9].
Apparently, our understanding of fundamental aspects of
the thermodynamic efficiency of Nernst-based devices has
not been updated since then. This lack of interest may have
been caused by the uncompetitive net efficiency of such
devices, which is inevitably suppressed by the energetic cost
of the strong magnetic fields they require. New discoveries
in the phenomenological theory of thermoelectric effects
as well as recent experiments showing the accessibility of
magnetic field effects in nanostructures even at low and
moderate field strengths [10–13], however, cast new light
on the topic of Nernst engines.
Within the framework of linear irreversible thermody-

namics it can be proven, quite generally, that the output
power of steady state heat engines vanishes as their effi-
ciency approaches the Carnot value ηC and, moreover, that
their efficiency atmaximumpower is subject to the universal
boundηC=2 [14].However, bothof these results rely strongly
on the time-reversal invariance of themicroscopic dynamics,
which implies that the off-diagonal Onsager coefficients are
identical. In the presence of a magnetic field breaking this
symmetry, they must be reassessed. Indeed, by extending
the standard analysis, Benenti and co-workers found that
thermoelectric efficiency could be increased so significantly
by a magnetic field that, in principle, even devices operating
reversibly at finite power seem to be achievable [15].
Such an intriguing suggestion asks for a better under-

standing of coupled heat and particle transport in magnetic
fields. First progress in this direction was recently achi-
eved within the paradigmatic class of multiterminal models

using the well-established Landauer-Büttiker formalism,
within which transport is described as a coherent quantum
scattering process of non-interacting particles [16,17].
Inelastic scattering events can be taken into account on a
phenomenological level using fictitious terminals, whose
temperature and chemical potential are chosen such that
they, on average, do not exchange heat or particles with the
real terminals [18]. Such probe terminals play a crucial role,
since it can be shown that for a pure two-terminal setup the
Onsager matrix is always symmetric, even in the presence
of a magnetic field [19]. For more terminals, the analysis
carried out in [20] and [21] revealed that current conserva-
tion implies much stronger bounds on the efficiency than
the standard rules of linear irreversible thermodynamics.
For the minimal case of three terminals these bounds were
even shown to be tight [22]. Since these studies were based
on general particle transmission probabilities without refer-
ence to any specific microscopic dynamics, they leave the
necessary conditions for saturating the new bounds open.
Simple mechanical models have led to remarkable

insight into the microscopic mechanisms underlying heat
and matter transport [23,24], especially in the context of
thermoelectric efficiency [25–27]. So far, the Nernst effect
has not yet been addressed using such models. We therefore
propose a minimalistic model for such an engine, which
relies on a classical formalism inspired by the Landauer-
Büttiker approach and provides physical insight on the
level of single particle trajectories.
System.—As shown in Fig. 1, we consider a two-

dimensional, circular, and potential-free central region of
radius R perpendicularly penetrated by a homogeneous
magnetic field B of strength B≡ jBj, surrounded by four
thermochemical reservoirs Ci, each of which covers a seg-
ment of length l≡ πR=2 of the boundary. The fluxes entering
and leaving the system through the reservoirs can be
determined as follows. Any particle that reaches the circular
boundary from one of the reservoirs is assumed to enter the
central region, in which it follows a circular trajectory due to
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the Lorentz force. Such a minimalistic assumption of
perfectly transparent boundaries has been shown to be
thermodynamically consistent [28] and allows us to calcu-
late the fluxes explicitly. Maxwell-Boltzmann statistics in
the reservoirs modeled as ideal gases maintained at equi-
librium with temperature Ti ≡ 1=βi and chemical potential
μi implies a total particle current [29],

Jϱþi ≡
Z
l
ds

Z
∞

0

dE
Z

π=2

−π=2
dϑuiðEÞ cos ϑ ¼

ffiffiffiffiffiffiffiffiffi
2πm

p
leβiμi

β3=2i h2
;

(1)

flowing from the reservoir Ci into the system, where
uiðEÞ≡

ffiffiffiffiffiffiffiffiffiffi
2mE

p
exp½−βiðE − μiÞ�=h2, m denotes the mass

of the particles, E their kinetic energy, h Planck’s constant
and Boltzmann’s constant has been set equal to 1 through-
out this Letter. For the definition of the coordinates s and ϑ,
see Figs. 1 and 2. Likewise, assuming that each particle
hitting the boundary from inside the central region is

absorbed in the adjacent reservoir, the steady-state current
flowing into Ci reads

Jϱ−i ≡X
j

Z
l
ds

Z
∞

0

dE
Z

π=2

−π=2
dϑujðEÞ cosϑτiðE; s; ϑÞ:

(2)

In (2), we have introduced the conditional probability
τiðE; s;ϑÞ for a particle of energy E entering at position
s with an angle ϑ to reach the boundary of the reservoir Ci
after passing through the central region. Since we assume
purely Hamiltonian dynamics, this probability can either be
1 or 0. In order to derive a concise expression for the net
particle current Jϱi ≡ Jϱþi − Jϱ−i leaving the reservoir Ci, we
define the transmission coefficients

TjiðEÞ≡
Z
l
ds

Z
π=2

−π=2
dϑτjðE; s; ϑÞ cos ϑ: (3)

As our first main result, we can show that Liouville’s
theorem implies the sum rules [30]X

i

TjiðEÞ ¼
X
j

TjiðEÞ ¼ 2l: (4)

By combining (1), (2), and (4), we finally arrive at

Jϱi ¼
X
j

Z
∞

0

dETijðEÞðuiðEÞ − ujðEÞÞ: (5)

An analogous calculation yields the net heat flux leaving
reservoir Ci,

Jqi ¼
X
j

Z
∞

0

dETijðEÞðE − μiÞðuiðEÞ − ujðEÞÞ: (6)

We note that, by virtue of the sum rules (4), the total
entropy production _S≡P

iJ
q
i =Ti accompanying the trans-

port process can be shown to be non-negative [34]. Thus,
the relations (4) guarantee the thermodynamic consistency
of this formalism.
We now choose the reference values, μ≡ μ2 and T ≡ T1

and define Δμi ≡ μi − μ and ΔTi ≡ Ti − T. Within the
linear response regime, the currents (5) and (6) can be
written as

Jκi ¼
X
jν

Lκν
ijF

ν
j with κ; ν ¼ ϱ; q; (7)

where, we have introduced the affinities Fϱ
i ≡ Δμi=T and

Fq
i ≡ ΔTi=T2, and the Onsager coefficients

�Lϱϱ
ij Lϱq

ij

Lqϱ
ij Lqq

ij

�
≡

Z
∞

0

dEuðEÞ
�

1 E − μ

E − μ ðE − μÞ2
�

× ð2lδij −TijðEÞÞ (8)

with uðEÞ≡ ffiffiffiffiffiffiffiffiffiffi
2mE

p
exp½−βðE − μÞ�=h2.

FIG. 1 (color online). Scheme of the classical Nernst engine.
The vertical heat current (red arrow) between reservoir C3 and C1

with T3 > T1 drives a horizontal particle current (grey arrow)
from reservoir C4 to C2 with μ2 > μ4. The circular arrows show
typical trajectories for a strong magnetic field B. Their radius
and number reflect the temperature and chemical potential, i.e.,
density, of the respective reservoir they originate from. The
coordinate 0 ≤ s ≤ 2πR parametrizes the boundary.

FIG. 2 (color online). Geometry of a single trajectory leaving
the reservoir Ci at the position sin with an angle ϑ > 0 and
entering the reservoirCiþ1 at sin þ Δs. The boundary appears as a
straight line, since the Larmor radii are typically small compared
to the radius of the central region in the strong field regime. For
further symbols, see main text.
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Operation principle of the Nernst engine.—For a Nernst
engine, we put Δμ4 < 0 and ΔT3 > 0 and impose the
boundary conditions

Jϱ1 ¼ Jϱ3 ¼ 0 and Jq2 ¼ Jq4 ¼ 0; (9)

which allow us to eliminate Fϱ
1;F

ϱ
3;F

q
2 and Fq

4 in (7).
These conditions ensure that the particle current occurs
only horizontally and heat flows only vertically in the setup
of Fig. 1. The operation principle of the Nernst engine can
then be understood in terms of typical trajectories as
follows. The lower reservoir C3 is at high temperature
but relatively low chemical potential. Therefore, it transmits
few but fast particles to the right reservoir C4. Since
this reservoir has lower temperature but higher chemical
potential, it injects slower but more particles in order to
compensate for the inflowing heat current. Thus, heat is
dissipated into the upper, cold reservoir C1. Now, the
number of particles in C1 has to be conserved on average.
Consequently, its chemical potential must be relatively high
to ensure that many but slow particles are transferred to the
left reservoir C2. Finally, due to T2 > T1, a small particle
current from C2 to C3 is sufficient to compensate for the
heat current C2 has received from C1. Summing up, the net
heat current from C3 to C1 drives a particle current uphill
from C4 to C2.
Bounds on Onsager coefficients and efficiency.—For the

current vector J≡ ðJϱ4; Jq3Þt and the affinity vector
F≡ ðFϱ

4;F
q
3Þt, we get

J ¼ LF; where L≡
�
Lϱϱ Lϱq

Lqϱ Lqq

�
(10)

is a matrix of effective Onsager coefficients. The two mirror
symmetries of our model imply that the off-diagonal entries
of this matrix are connected via the relation [34]

Lϱq ¼ −Lqϱ: (11)

The output power and efficiency then become P ¼
−Δμ4J

ϱ
4 and η ¼ P=Jq3 [14]. Maximizing η with respect

to Fϱ
4 under the condition P ≥ 0 yields

ηmax ¼ ηC
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ZT

p

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ZT

p with ZT ≡ L2
ϱq

DetL
; (12)

where ηC ≡ 1 − T1=T3 ≈ TFq
3 denotes the Carnot effi-

ciency. Obviously, like for conventional thermoelectric
devices [15], the maximum efficiency depends only on a
single dimensionless quantity, the thermomagnetic figure
of merit ZT. This parameter is usually given in the form
ZT ¼ ðNBÞ2σT=κ, where NB is the thermomagnetic
power, σ the electric and κ the thermal conductivity [1].
However, this definition coincides with the one given in

(12), if the transport coefficients NB; σ; κ are identified
correctly with the effective Onsager coefficients [35].
Two bounds successively constrain the parameter ZT.

First, since the second law requires the rate of entropy
production _S ¼ FtJ ¼ FtLF [37] to be non-negative, the
matrix L must be positive semidefinite. Due to the
symmetry (11), this condition reduces to Lϱϱ; Lqq ≥ 0.
By recalling (12) one has [9]

0 ≤ ZT ≤ 1: (13)

Second, by techniques similar to the ones used in [21], we
can show that the Hermitian matrix

K≡ Lþ Lt þ iðL − LtÞ (14)

has to be positive semidefinite as a consequence of the sum
rules (4) [30]. This constraint can be expressed as

ðDetKÞ=4 ¼ LϱϱLqq − L2
ϱq ≥ 0; (15)

leading to

0 ≤ ZT ≤ 1=2: (16)

Obviously, the constraint (16), which ultimately relies on
Liouville’s theorem, is stronger than (13). In particular,
while the second law, in principle, allows the maximum
efficiency to approach ηC in the limit ZT → 1, the bound
(16) implies the significantly lower limit

ηmax ≤ ð3 − 2
ffiffiffi
2

p
ÞηC ≃ 0.172ηC: (17)

This universal bound on the efficiency of a classical Nernst
engine is our second main result. It arises from the four-
terminal setup and the symmetry (11) but is independent of
further details of the geometry and the strength of the
magnetic field. Moreover, (17) would hold for any potential
landscape inside the central region preserving the two
mirror symmetries of the system. In particular, one may
include potential barriers separating the central area from
the reservoirs. We note that any additional potential arising
from differently biased reservoirs can be safely neglected
within the linear response regime, since, quite generally, the
linear transport coefficients, i.e., here the Onsager coef-
ficients (10), do not depend on the applied external fields.
Strong field limit.—The existence of a bound provokes

the question whether it can be saturated in any given
microscopic model. For addressing this issue within our
setup, we need to calculate the transmission coefficients
TijðEÞ explicitly. To this end, we consider a particle with
energy E injected from the reservoir Ci at sin with an angle
−π=2 < ϑ < π=2 as shown in Fig. 2. Due to the Lorentz
force, this particle moves on a circle of radius

RcðEÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2mE

p
c=ðjqjBÞ≡ νðEÞR (18)
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inside the central region and hits the boundary after leaping
over a distance Δs measured along the boundary. Here, c
denotes the speed of light and q < 0 the charge of the
particle. We focus on the strong field limit, within which
the radii of the Larmor circles RcðEÞ are small compared to
the radius of the central region, i.e., νðEÞ ≪ 1, for typical
energies E. Consequently, within this regime, the boundary
can be treated as a straight line as illustrated in Fig. 2.
A simple geometrical analysis then shows

Δs ¼ 2RνðEÞ cosϑ: (19)

Since this quantity is bounded from above by 2RνðEÞ ≪ R,
we can consistently assume that particles emitted from the
reservoir Ci can either pass to the adjacent reservoir Ciþ1 or
return to Ci; i.e., there is transmission of particles only
between next neighbor reservoirs. Consequently, we have
TjiðEÞ ¼ 0 for j ≠ i; iþ 1. Moreover, the sum rules (4)
require TiiðEÞ ¼ 2l −Tiþ1iðEÞ. Hence, we are left with
calculating Tiþ1iðEÞ. For this purpose, we recall Fig. 2
and recognize that a particle injected from the reservoir Ci
at a certain position sin can reach reservoir Ciþ1 only if
Δs ≥ si − sin, where si marks the contact point of the
reservoirs Ci and Ciþ1. By virtue of (19), this transmission
condition can be rewritten as ϑ− < ϑ < ϑþ with
ϑ� ≡� arccos ½ðsi − sinÞ=ð2RνÞ�. Finally, by using the
definition (3), we arrive at

Tiþ1iðEÞ ¼
Z

si

si−2RνðEÞ
dsin

Z
ϑþ

ϑ−

dϑ cosϑ ¼ πRνðEÞ: (20)

Inserting the transmission coefficients (20) into the
general formula (8) for the primary Onsager coefficients
and taking into account the auxiliary conditions (9) yields,
as our third main result, the effective Onsager matrix

L ¼ J0
2

ffiffiffi
π

p
Bv

�
1

ffiffiffiffiffiffiffiffiffiffiffi
v − 1

p
=β

−
ffiffiffiffiffiffiffiffiffiffiffi
v − 1

p
=β ð1þ vÞ=β2

�
: (21)

Here, we have defined v≡ 1þ ð2 − βμÞ2 and the dimen-
sionless strength of the magnetic field B≡ jqjBR ffiffiffi

β
p

=
ð ffiffiffiffiffiffiffi

2m
p

cÞ. J0 ≡ ð2πÞ32 ffiffiffiffi
m

p
R exp½βμ�=ðβ3

2h2Þ corresponds to
the total particle current flowing into the central region at
thermal equilibrium, i.e., for ΔTi ¼ Δμi ¼ 0, as one can
easily infer from (1). The maximum efficiency in this strong
field regime B ≫ 1 follows by inserting (21) into (12) as

ηmax ¼ ηC

ffiffiffiffiffi
2v

p
−

ffiffiffiffiffiffiffiffiffiffiffi
1þ v

p
ffiffiffiffiffi
2v

p þ ffiffiffiffiffiffiffiffiffiffiffi
1þ v

p with ZT ¼ v − 1

2v
: (22)

The bounds (16) and (17) are indeed reached for v → ∞, i.e.,
for βμ → −∞ [38]. However, in this limit, the equilibrium
current J0 ∼ exp½βμ�, and likewise the Onsager matrix (21),
decay exponentially. Thus, the saturation of the bounds (16)
and (17) comes at the price of vanishing power.

Efficiency at maximum power.—After studying the
maximum efficiency of our device, we now consider
another important benchmark for the performance of a
thermoelectric engine, its efficiency at maximum power η�
[14,39–41], which is obtained by maximizing the output
power P ¼ −Δμ4J

ϱ
4 with respect to Δμ4. Expressed in

terms of ZT, this parameter reads

η� ≡ ηCAZT=ð2 −ZTÞ; (23)

where ηCA ¼ ηC=2 denotes the Curzon-Ahlborn value [39],
which is attained forZT → 1. However, the constraint (16)
implies the stronger bound

η� ≤ ηCA=3: (24)

In the strong field regime, (23) becomes η� ¼
ηCAðv − 1Þ=ð3vþ 1Þ. Thus, like ηmax, η� reaches the bound
(24) only in the limit v → ∞, i.e., for βμ → −∞.
Concluding perspectives.—In this Letter, we have devel-

oped a classical formalism to describe heat and particle
transport in non-interacting systems, which can be regarded
as the classical analogue to the Landauer-Büttiker approach.
The crucial quantities of this formalism are the energy-
dependent transmission coefficients TjiðEÞ, for which we
have proven the sum rules (4). We emphasize that these sum
rules follow solely from Liouville’s theorem and thus hold
for any kind of Hamiltonian dynamics inside a central region
of arbitrary shape.
Using this formalism, we introduced a simple and

analytically solvable model for a heat engine based on
the Nernst effect, which, mainly for two reasons, is more
complex than the Seebeck effect. First, for a sample to be
affected by a magnetic field, one needs at least a two-
dimensional geometry, allowing the occurrence of looplike
trajectories. Second, while in an isotropic Seebeck device
heat and particle current are parallel, the Nernst engine
requires at least four terminals to allow these currents to run
perpendicular to each other.
For the maximum efficiency and the efficiency at

maximum power of our engine, we derived universal upper
bounds of about 17% of the Carnot value. These bounds
can indeed be saturated for a strong field and small
fugacities in the reservoirs but only at the price of vanishing
power. The analogous results hold for a cooling device
based on the Ettingshausen effect [1,34]. In both cases, the
bounds would not change even in the presence of an
additional potential, for a geometrically deformed central
region or for unequal lengths of the boundaries to the
respective baths provided the two mirror symmetries are
kept [34]. On the one hand, this low value may be regarded
as bad news concerning the competitiveness of Nernst
based energy converters. On the other hand, they suggest
that, from a thermodynamic point of view, Nernst devices
are subject to so far unexplored constraints quite different
from those applying to Seebeck devices. The question
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whether our strong bounds could be lifted in more realistic
models including inelastic scattering and particle-particle
interactions therefore constitutes an interesting topic for
future research. Finally, due to its simplicity and physical
transparency, our classical approach can provide a valuable
benchmark for assessing the role of quantum effects in
future modeling.
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