
Asymptotically Optimal Topological Quantum Compiling

Vadym Kliuchnikov,1 Alex Bocharov,2 and Krysta M. Svore2
1Institute for Quantum Computing and David R. Cheriton School of Computer Science,

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
2Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052, USA

(Received 27 December 2013; published 9 April 2014)

We address the problem of compiling quantum operations into braid representations for non-Abelian
quasiparticles described by the Fibonacci anyon model. We classify the single-qubit unitaries that can be
represented exactly by Fibonacci anyon braids and use the classification to develop a probabilistically
polynomial algorithm that approximates any given single-qubit unitary to a desired precision by an
asymptotically depth-optimal braid pattern. We extend our algorithm in two directions: to produce braids
that allow only single-strand movement, called weaves, and to produce depth-optimal approximations of
two-qubit gates. Our compiled braid patterns have depths that are 20 to 1000 times shorter than those output
by prior state-of-the-art methods, for precisions ranging between 10−10 and 10−30.
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Introduction.—In a topological quantum computer, quan-
tum information is natively protected from small local errors
and universality can be achieved by braiding quasiparticles.
If two quasiparticles are kept sufficiently far apart and their
worldlines in 2þ 1-dimensional space-time are braided
adiabatically, a unitary evolution can be realized. One class
of non-Abelian anyons, called Fibonacci anyons, are
predicted to exist in systems in a state corresponding to
the fractional quantum Hall plateau at filling fraction μ ¼
12=5 [1,2]. It has been shown that Fibonacci anyon braids
realize universal quantum computation [3,4]. Such topo-
logical systems are promising for realizing a topological
quantum computer, and have the significant advantage of
being intrinsically fault tolerant, reducing the need for
resource-intensive quantum error correction.
The problem of approximating arbitrary unitary oper-

ations with Fibonacci braid patterns of optimal depth is
essential for topological quantum computing. Previous
work [5,6] has developed methods using the Solovay-
Kitaev algorithm [7] for approximating a given single-
qubit unitary to precision ε by a Fibonacci anyon braid
pattern with depth Oðlogcð1=εÞÞ, where c ∼ 3.97 in time
t ∼ log2.71ð1=εÞ. For coarse precisions, one can also use
brute-force search to find a braid with minimal depth
Oð logð1=εÞÞ in exponential time [6]. Since the number of
braids grows exponentially with the depth of the braid, this
technique is infeasible for long braids required to achieve
fine-grain precisions.
In this Letter, we address compilation of single- and two-

qubit quantum operations into braid representations for
non-Abelian quasiparticles described by the Fibonacci
anyon model. We apply algebraic number theory to
synthesize both exact and approximate representations of
unitaries by anyon braids. We construct algorithms for such
synthesis that have probabilistically polynomial runtime.

We then extend our techniques to a class of braids called
weaves, where only one of three anyons moves to carry out
the braid pattern. Combined with methods in [6], this
extension gives a way to construct a high-quality two-qubit
gate. Finally, we use our algorithm to approximate two-
qubit gates and show that in both the single- and two-qubit
case, our algorithm outputs an asymptotically depth-
optimal braid pattern. Furthermore, the runtime of the
algorithm for finding approximations of two qubit gates is
also polynomial in logð1=εÞ on average. Our results signifi-
cantly reduce the overhead caused by compiling quantum
algorithms into braid patterns for Fibonacci anyons.
Background.—There are different ways of encoding

qubits and gates with Fibonacci anyons (cf. [8,9]). In this
work, we focus on the three-particle encoding of a qubit
[6], where the computational basis state j0i corresponds to
the first two anyons having topological charge zero, and
state j1i corresponds to the first two anyons having
topological charge one. The topological charge of all three
anyons in both cases is one. Measurement of the topologi-
cal charge of the first two anyons is a projective measure-
ment in the computational basis. Unitary operations are
realized by moving anyons around each other, where the
result depends only on topological properties of the anyon
worldlines.
Any braid of the three particles can be represented in

terms of the two generators σ1, σ2 of the three-strand braid
group. We use σ1, σ2 to denote the corresponding unitary
operations, where

σ1 ≔ ω6

�
1 0

0 ω7

�
; ω ≔ eiπ=5

and σ2 is expressed using the “fusion” matrix F (that
describes a change of computational basis):
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F ≔
�

τ
ffiffiffi
τ

p
ffiffiffi
τ

p
−τ

�
; τ ¼ ð

ffiffiffi
5

p
− 1Þ=2; σ2 ≔ Fσ1F :

It has been shown [3,4] that unitaries σ1, σ2 are
approximately universal, that is, for any single-qubit
unitary U ∈ Uð2Þ and given precision ε there is a circuit
consisting of σ1 and σ2 gates which approximates U within
precision ε. Results [10,11] imply that it is always possible
to find a circuit of size Oð logð1=εÞÞ that achieves approxi-
mation precision ε. However, no efficient algorithm for
producing such a circuit was known. Here we introduce a
probabilistically polynomial-time algorithm to approximate
U within precision ε with a circuit over the gate set σ1, σ2,
σ−11 , and σ−12 that has depth at most Oð logð1=εÞÞ. We refer
to the four basis gates as σ gates and to the circuit as a
hσ1; σ2i circuit. The circuit length (or equivalently depth)
corresponds to the number of anyon moves needed to
perform the given unitary.
We reduce the problem to approximating two types of

unitaries: rotations around the Z axis

RzðϕÞ ≔
�
e−iϕ=2 0

0 eiϕ=2

�
;

and RzðϕÞX, where X is the Pauli X gate. The reduction
follows from the fact that any unitary that is not equal to
RzðϕÞX can be represented as RzðαÞFRzðβÞFRzðγÞ up
to a global phase (see Supplemental Material [12] for
the proof).
We use a global phase-invariant distance to measure the

approximation precision

dðU;VÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jtrðUV†Þj=2

q
:

Overview of the algorithm.—The compilation algorithm
takes as input an arbitrary single-qubit unitary operation
and a desired precision ε. The first step approximates the
unitary with a special unitary gate, called an exact unitary,
that can be represented exactly (ε ¼ 0) by a Fibonacci
anyon braid pattern. Unitaries of the following form are
defined to be exact:

U½u; v; k� ≔
�

u v�
ffiffiffi
τ

p
ωk

v
ffiffiffi
τ

p −u�ωk

�
; (1)

The numbers u and v must come from the ring of
cyclotomic integers:

Z½ω� ≔ faþ bωþ cω2 þ dω3ja; b; c; d ∈ Zg: (2)

The second step applies the exact synthesis algorithm to
the exact unitary gate in order to synthesize an hF ; T i-
circuit. Finally, the circuit is translated into a Fibonacci

anyon braid pattern and compressed using peephole opti-
mization [13].
Exact synthesis.—We begin by describing the second

step: an efficient algorithm for synthesizing a precise
hF ; T i circuit for a given exact unitary, where

F ¼
�

τ
ffiffiffi
τ

p
ffiffiffi
τ

p
−τ

�
; T ¼

�
1 0

0 ω

�
:

Any hF ; T i circuit can be expressed as a hσ1; σ2i
circuit using the relations T ¼ ðωIdÞ2ðσ1Þ3 and F ¼
ðωIdÞ4σ1σ2σ1. A hσ1; σ2i circuit is more natural when
considering physical implementations: σ1 represents the
first of the three quasiparticles crossing over the second,
and σ2, the second over the third.
Two concepts are essential: the real subring of the

cyclotomic ring Z½ω� (2)

Z½τ� ≔ faþ bτja; b ∈ Zg;

and an automorphism of Z½ω�

ð.Þ•∶Z½ω�↦Z½ω� such that ω• ¼ ω3: (3)

This implies, for example, that

τ• ¼ ðω2 − ω3Þ• ¼ ðω•Þ2 − ðω•Þ3 ¼ −ðτ þ 1Þ:

Hence ð.Þ• can be restricted on Z½τ�.
We introduce the complexity measure μðuÞ ≔ ju•j2. and

extend it to exact unitaries as μðU½u; v; k�Þ ≔ μðuÞ, where
μðuÞ takes values from Z½τ�.
The exact synthesis algorithm, given in Fig. 1, performs

a sequence of complexity reductions by applying an FT k

operation at each step. T'he length (depth) n of the output
circuit is guaranteed to be in ΘðlogðμðUÞÞÞ. The algorithm
requires at most OðnÞ arithmetic operations and outputs an
hF ; T i circuit withOðnÞ gates. The Supplemental Material
[12] contains supporting proofs.

FIG. 1. Exact synthesis algorithm.
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Approximation.—On it first stage the compilation algo-
rithm approximates the target RzðϕÞ rotation or RzðϕÞX
gate.
Approximation consists of two steps. First, we find a

cyclotomic integer u that is in ε proximity to e−iϕ=2.
The second steps solves a relative norm equation to

complete cyclotomic integer u with v from Z½ω� such that
U½u; v; 0� is a unitary matrix.
For the first step, the distance between RzðϕÞ and U

simplifies to

dðRzðϕÞ; U½u; v; 0�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jReðueiϕ=2Þj

q
;

where the precision depends only on u, the top left entry of
U½u; v; 0�. Therefore, it is sufficient to find u from Z½ω�
such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jReðueiϕ=2Þj

p
≤ ε.

However, there must also exist a v from Z½ω� such that
U½u; v; 0� is unitary. In particular, v ∈ Z½ω�must satisfy the
norm condition

jvj2 ¼ ð1 − juj2Þ=τ ¼ ð1 − juj2Þð1þ τÞ: (4)

We interpret the right-hand side of this condition as an
element of the Z½τ� ring which makes (4) a special instance
of the relative norm equation

NiðxÞ ¼ ξ; (5)

where ξ ∈ Z½τ�, x ∈ Z½ω�, and Ni∶Z½ω� → Z½τ�,
NiðxÞ↦xx� is the relative norm map. For (5) to be solvable
it is necessary that ξ > 0 and ξ• > 0, but these conditions
are not sufficient.
Equation (4) is only solvable for a fraction of randomly

generated values of u. However, a significant fraction of
such values allows for “easy” solutions of the norm
equation and we can efficiently test if a given case is easy.
Powerful algorithms exist for solving relative norm

equations in algebraic number rings [14–16]. In the
Supplemental Material [12], we give an algorithm to solve
the norm equation that runs in probabilistically polynomial
time provided the right-hand side of (5) is easy to factor. We
prove, under a given number theory conjecture (Conjecture
9 in the Supplemental Material [12]), that an easy instance
can be found after Oð logð1=εÞÞ random trials. That is,
given ξ > 0, ξ• > 0, and p ¼ ξξ• is an integer prime, we
prove that (5) is solvable if and only if pmod 5 is either 1 or
0. The probability of encountering an easily solvable norm
equation is thus no less than the probability of encountering
a prime number of the form 5mþ 1 in a stream of random
integers of a certain size.
The compilation algorithm is given in Fig. 2 (procedures

listed in the Supplemental Material [12]). Each iteration
uses RANDOM-SAMPLE to randomly pick a u ∈ Z½ω�
that is in ε proximity of e−iφ=2. The corresponding norm

equation is then tested for easy solution (line 9). An easy
solution v is found in Oð1=εÞ random trials.
Once v is found the unitary U½u; v; 0� is constructed

(lines 11–12). It can be proved that the complexity measure
μ of U½u; v; 0� is in Oð1=εÞ. Finally, the exact synthesis
algorithm (line 15) outputs the corresponding circuit. The
depth of the circuit output by EXACT-SYNTHESIZE
(Fig. 1) is bound by log of the complexity measure of
the sample, making the depth Oð logð1=εÞÞ.
Experimental results.—We evaluate the approximation

quality of our algorithm on several sets of inputs. We obtain
empirical evidence that the depth of the compiled circuits
scales as Oð logð1=εÞÞ. Experiment details are reported in
the Supplemental Material [12] where approximations of
frequently used single qubit gates are also given.
Figure 3(a) shows precision ε versus the circuit depth for

rotations by angles π=2k used in the quantum Fourier
transform. Figure 3(b) compares the circuit depth of our
algorithm (NTA) versus brute force search (BFS) for RZðϕÞ
rotations where angles ϕ are chosen to cover the interval [0,
2π] uniformly. BFS is performed over a database of optimal
hσ1; σ2i circuits of length up to 25 gates; BFS can only
achieve precisions around 10−2.5 or coarser. The figures
show that NTA produces circuits that are within 18% of the
minimum circuit depth for RzðϕÞ rotations. We also find
that the NTA implementaion (in C++) has a runtime that
scales slower than log2ð1=εÞ when ε tends to zero.
Weaves.—A weave corresponds to a circuit generated by

σ21, σ
2
2 gates and their inverses.

Approximating unitaries with weaves requires
replacing EXACT-SYNTHESIZE in Fig. 2 with
EXACT-SYNTHESIZE-W (Fig. 4), which efficiently finds
the first easy norm instance that also satisfies an extra
condition—U½u; v; 0� must be representable by a weave—
and outputs the corresponding circuit (proof in [12]).

FIG. 2. Compilation algorithm.
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Experiments (see the Supplemental Material [12]) indicate
that the number of random trials required to find an easy
instance increases by a constant factor over the generic
braid case. We also find that the number of hσ1; σ2i gates
needed scales as 2ð9.67log10ð1=εÞ þ 6.61Þ. The factor of 2
reflects that each hσ21; σ22i-circuit generator is equivalent to
two hσ1; σ2i-circuit generators. Thus, the number of
elementary gates required to achieve a desired precision
with weaves is 30% larger than with generic braid patterns.
Two-qubit gate synthesis.—As suggested in [17], the

existence of an entangling two-qubit gate that can be
exactly represented as a unitary anyon braid remains
open for future work. However, our techniques can be
used to efficiently ε approximate two-qubit gates with
asymptotically depth-optimal braid patterns.

Consider the braid pattern found using BFS in [6] that
approximates the gate controlled-σ22 [Λðσ22Þ]. We can
reduce its implementation to compilation of a global phase
matrix and then use a variation of our approximation
algorithm to yield a braid circuit of depth Oð logð1=εÞÞ.
The algorithm to approximate nontrivial global phases is

as follows. Make a sequence of calls to RANDOM-
SAMPLE (0, δ=4, 1) (Supplemental Material [12]). For
any u ∈ Z½ω� generated by a call, juj2 < 1 while
1 − juj2 < ðδ=4Þ2. Check whether the relative norm equa-
tion jvj2 ¼ ð1 − juj2Þð1þ τÞ is an easy instance. Once an
easy instance is obtained, use the exact Fibonacci matrix
U ¼ U½u; v; 0� which is in the δ=4-vicinity of Id.
Our experiments indicate that U can be decomposed into

a weave of the form ωkb, b ¼ bðσ2Þ, k ∈ f0;…; 9g in
probabilistically polynomial runtime. If k is 0 or 5, we
reject the solution and continue drawing random samples.
We observe empirically that k ∈ f0; 5g is 4 times less likely
than the opposite case, so it will take on average 5=4
successful weave decompositions to find one with
k∉f0; 5g. If k is even then b−1 is a δ=4 approximation
of one of the global phases of interest. If k is odd then b−2 is
a δ=2 approximation of one such phase [18]. Details and
examples of braid patterns approximating Λðσ22Þ are given
in the Supplemental Material [12].
Conclusions.—We have developed an algorithm for

optimal representation of single-qubit unitaries as braid
patterns in the Fibonacci anyon basis in topological
quantum computing. Our algorithm enables efficient com-
pilation of single-qubit unitaries into circuits of asymp-
totically optimal depth Oð logð1=εÞÞ for an arbitrary target
precision ε.
Compilation of an axial rotation to precision 10−30 takes

less than 80 ms on average on a regular classical desktop

FIG. 3. (a) Number of σ gates needed to achieve approximation
precision ε using our number theoretic algorithm (NTA) on
RZðϕÞ rotations with ϕ ¼ π=2k. (b) Comparison of the number of
σ gates needed to achieve approximation precision ε using NTA
versus brute force search (BFS), for RZðϕÞ rotations,where ϕ
covers uniformly the range of angles [0, 2π].

FIG. 4. Exact synthesis algorithm for weaves.
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computer. Extensions of our algorithm can be used to
produce both weaves and two-qubit gate approximations.
Consequently, our topological compiler significantly
improves on state-of-the-art solutions in both an asymptotic
and practical sense. Future work includes proving
(or disproving) the existence of a nonleaking two-qubit
gate in the anyon braid representation.
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