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Observations in quantum mechanics are subject to complex restrictions arising from the principle of
energy conservation. Determining such restrictions, however, has been so far an elusive task, and only
partial results are known. In this Letter, we discuss how constraints on the energy spectrum of a
measurement device translate into limitations on the measurements which we can effect on a target system
with a nonconstant energy operator. We provide efficient algorithms to characterize such limitations and, in
case the target is a two-level quantum system, we quantify them exactly. Our Letter, thus, identifies the
boundaries between what is possible or impossible to measure, i.e., between what we can see or not, when
energy conservation is at stake.
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Our success in investigating natural phenomena relies
critically on our ability to perform accurate measurements.
It is no wonder therefore that improving the performance of
our measuring devices is one of the main goals in our
technical progress. However, it turns out that in some
instances our ability to perform certain measurements is not
only limited by our technological capability, but by basic
physical principles. One famous such limitation is that
imposed by conservation laws. Consider, for example, a
closed laboratory, freely floating in space. The total energy
of the lab (including the lab walls, the particles inside, and
all the measuring devices) is a conserved quantity. Suppose
now that we would like to measure some physical quantity
that does not commute with the total energy. According to
quantum mechanics, this is impossible since such a
measurement would disturb the energy operator (the
Hamiltonian) and hence, may change the total energy,
violating the conservation law. This is roughly the content
of the famous Wigner-Araki-Yanase theorem [1–3].
Obviously however, if our lab is allowed to exchange

energy with some other external body, say a second lab
floating next to it, more possibilities open. But what exactly
are these new possibilities? Or, in other words, what are the
constraints imposed by conservation laws, when some form
of exchange of conserved quantities is allowed? Even
though some specific limits are known [4–9], an exact
characterization of the constraints induced by conservation
laws is still missing.
For illustration, consider two separate parties trying to

violate the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity [10] by conducting measurements on the bipartite Fock
state jφiAB ≡ ð1= ffiffiffi

2
p Þðj0iAj1iB þ j1iAj0iBÞ. If Alice and

Bob are limited to using passive optical operations and
photodetectors, they will never go beyond the classical
limit. This follows from the fact that, if their local
measurements commute with the local photon number
operator, Alice and Bob cannot distinguish their state from

the locally dephased (in the energy basis) separable
state 1

2
ðj0ih0jA ⊗ j1ih1jB þ j1ih1jA ⊗ j0ih0jBÞ.

Suppose now that they also have access to a source of
Fock states of the form jþi≡ ð1= ffiffiffi

2
p Þðj0i þ j1iÞ. This

time, Alice and Bob will see a CHSH violation when they
use the optical setup [11] depicted in Fig. 1. However, they
will not get close to the quantum limit 2

ffiffiffi
2

p
[13], no matter

what energy-conserving interactions they apply (see the
Supplemental Material [14]).
An interpretation of this result is that the presence of

coherent superpositions of energy eigenstates jþi increases
up to a point, the set of local measurements which
Alice and Bob c an implement over the state jφi. What
measurement processes are available when Alice’s meas-
urement device uses states other than jþi, like
ð1= ffiffiffi

3
p Þðj0i þ j1i þ j2iÞ, or the coherent state jαi? How

is Alice’s capacity to measure limited by the dimensionality

FIG. 1. Bell experiment under energy-conserving interactions.
Alice and Bob can violate the CHSH Bell inequality by means of
beam splitters of varying transmittivity TA, TB, and shifters of
phase ΦA, ΦB, if, besides the entangled state jφi, they are
distributed each a copy of the reference state jþi. The quantity
Nk

A (Nk
B) denotes the number of photons registered by Alice’s

(Bob’s) kth detector.
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of the quantum states that she can handle, or the energy of
such states? These are the kinds of questions that we
address in this Letter.
This Letter explores how measurements of a target

system affected by a given quantum device depend on
the relation between the energy spectra of one system and
the other. In case the target is a two-level system, we
determine the difference between the set of all conceivable
measurements and the set of all measurements implement-
able by devices with finite energy spectrum, or with
unbounded energy spectrum, but bounded average energy
Ē. Additionally, we provide an efficient algorithmic char-
acterization of the set of accessible measurements for target
systems of any dimension. Our Letter, hence, reveals to
what extent energy conservation affects our capacity to see
the world.
Traditional descriptions of the measurement process in

quantum mechanics typically overlook the energy
exchange between the system under observation and the
measurement device carrying it. Our starting point will,
thus, be a measurement model where the quantum nature of
such energy transfer is properly accounted for.
A general measurement over a quantum system in state ρ

is described by a positive operator valued measure
(POVM), i.e., a set M of positive semidefinite operators
M≡ fMxgnx¼0, with

P
n
x¼0Mx ¼ IH, such that

pðxÞ ¼ trðρMxÞ (1)

denotes the probability of obtaining outcome x. In general,
such a measurement must be physically realized by
attaching our target system S to a measuring device whose
pointer P is in the initial quantum state j0i and, for
simplicity, has zero Hamiltonian. The third main element
is a battery with energy operator HB. The battery is the
auxiliary system with which our original system S may
exchange energy. It is the efficiency of this battery that
interests us here. Finally, we also need a clock that will
switch on and off the interaction between the system S, the
battery B, and the pointer P. Think of Alice’s experimental
setup in Fig. 1: there, the target is the laser beam carrying
the state trAðjφihφjÞ, and the ancillary state jþi constitutes
the battery. The displacement of these two beams through
optical fibers plays the role of the clock, which switches on
and off an interaction with the beam splitter and the two
photodetectors. The outcomes of the photodetectors can
then be printed on a piece of paper (the pointer).
In general, the clock itself may also contribute to the

energy exchange. This is a complication that is specific to
energy conservation constraints only. Indeed, for any other
conservation laws, such as momentum or angular momen-
tum conservation, one can also consider an auxiliary
system (i.e., a “battery”) with which the conserved quantity
can be exchanged, and the existence of such a battery will
enlarge the class of possible measurements. In those cases,

however, the clock that turns on and off the interaction will
not interfere with the conserved quantity. In the present
Letter, we will also consider that the clock switches the
interaction on and off adiabatically [15], so it does not
exchange energy with the SPB composite system; all the
energy exchanges can, thus, be traced to the battery and
accounted for. Note that this is not a loss of generality at all:
we can, in fact, accommodate many other fast clocks in this
picture, by considering them as part of the battery. They can
then switch on and off the SPB interaction anyway we
want, under the umbrella of the slow master clock whose
role is only to start and end the whole process.
Suppose now that we try to measure a target system S

with Hamiltonian HS, and assume that our measurement
device has a battery with energy operator HB ¼ P

nμnΠn,
where fΠig are orthogonal projector operators. If the
Hamiltonians of the target and the battery do not have
coincident energy gaps (i.e., if they are nonresonant), the
presence of system B will not provide any advantage
towards measuring or interacting with system S in a
quantum way, as it can be easily seen. Resonant
Hamiltonians, however, allow us to increase the set of
possible measurements in a nontrivial fashion. Actually,
any measurement can be approximated up to arbitrary
precision by taking resonant HamiltoniansHB with enough
dimensionality d and appropriate battery states; see the
Supplemental Material [14].
This observation is certainly counterintuitive: one would

expect that ancillary systems with energy operator ~HB ≈
HB nearly resonant withHS should induce similar effective
measurements over system S (and thus, approximate
the set of all possible measurements for d ≫ 1). In the
Supplemental Material [14], we provide a possible solution
for this apparent paradox, by invoking an interaction with
hidden continuous degrees of freedom.
The aim of the rest of this Letter is to determine exactly

how the energy spectrum of our measurement device
constrains the set of effective POVMs that such a device
is able to implement on its target system. But, before this,
we have to specify means to quantify such constraints.
Suppose that we intend to measure our target S with a

battery B, that we can initially set to any pure quantum state
(i.e., any coherent superposition of eigenstates of the
energy operator) with energy distribution fðEÞdE, among
a set of distributions B. Let MðB; SÞ thus denote the set of
POVMs which we can implement over a target system S
with HamiltonianHS by preparing a suitable battery state in
B and then applying energy conserving interactions to
target, battery, and pointer. We want to quantify the
difference ϵðMðB; SÞ;MðdÞÞ between MðB; SÞ and
MðdÞ, the set of all POVMs in Cd. Notice that, if we
had a notion of distance distðM0;M1Þ between two
arbitrary POVMs, M0 and M1, then we could simply
define ϵðMðB; SÞ;MðdÞÞ as the maximal distance
between an element inMðdÞ and the smaller setMðB; SÞ:
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ϵðMðB; SÞ;MðdÞÞ ¼ max
M∈MðdÞ

distðMðB; SÞ;MÞ; (2)

with distðM;MÞ ¼ minM0∈MdistðM0;MÞ.
Our first step is, therefore, to introduce a natural distance

between POVMs. Suppose that we have a device capable of
implementing either measurement M0 ≡ fM0

xgx or M1 ≡
fM1

xgx with probability 1=2, but we ignore what measure-
ment it actually performs. We let the measuring device act
on a quantum state ρ and from the outcome x obtained, we
try to guess which of the two POVMs our machine is in fact
implementing. Optimizing over all possible input states ρ,
we obtain the maximum probability PC of guessing the
correct POVM. Note that PC ≥ 1=2, since we can always
make a completely random guess. PC induces a classical
distance distCðM0;M1Þ in the space of POVMs via the
relation PC ¼ 1

2
f1þ distCðM0;M1Þg, with

distCðM0;M1Þ ¼ 1

2
max
ρ

X
x

jtrfρðM0
x −M1

xÞgj: (3)

Analogously, we can define a quantum distance between
POVMs, by means of a protocol where the measuring
device acts on part A of an entangled state ρAB. Depending
on the outcome x of the measurement, we then implement a
(known) POVM Nx

a, with outcomes a ∈ f0; 1g on system
B and the result of this second measurement will be our
guess as to which of the two POVMs, M0 or M1, the
unknown measuring device is actually implementing. As
before, the probability PQ of correctly guessing the POVM
can be expressed as PQ ¼ 1

2
f1þ distQðM0;M1Þg, with

distQðM0;M1Þ ¼ 1

2
max
ρDQ

X
x

∥trD½ρDQðM0
x −M1

xÞ� ⊗ IQ∥1:

(4)

Note that the classical (quantum) distance ðdistCðM0;M1ÞÞ
distQðM0;M1Þ corresponds to the norm defined in Ref. [16]
(the diamond norm [17,18]) between the quantum channels
ΩaðρÞ ¼ P

xtrðρMa
xÞjxihxj, with a ¼ 1, 2. Like the

classical distance, distQ satisfies the triangle inequality
and has maximum value 1. Also, both distances can
be proven different even in the qubit case, with
distQðM0;M1Þ ≥ distCðM0;M1Þ, for all M0, M1; see the
Supplemental Material [14] for details.
These two distances lead to two different ways to

quantify the difference between an arbitrary set M of
POVMs in Cd and the set of all possible POVMs MðdÞ,
namely, a classical and a quantum one, ϵC and ϵQ, as
defined by Eq. (2). Intuitively, ϵC, ϵQ measure the fea-
sibility of distinguishing a device capable of implementing
any measurement in MðdÞ from another one restricted to
POVMs in M when separable (C) or entangled (Q) inputs
are allowed.

We will next apply the former notions to study the effect
of energy conservation over the set of feasible measure-
ments when the target system is a qubit.
Suppose then that S is a two-level system with

HS ¼ Δj1ih1j, which we probe with a battery B that we
can prepare in any state with energy distribution
fðEÞdE ∈ B. In these conditions, we prove that

ϵCðMðB; SÞÞ ¼ ϵQðMðB; SÞÞ ¼ 1

2
f1 − τðB; SÞg; (5)

where

τðB; SÞ ¼ max
fðEÞdE∈B

Z
∞

0

dEf1=2ðEÞf1=2ðEþ ΔÞ: (6)

Note that, in the absence of a battery, we can take HB ∝ I
and hence, Eqs. (5), (6) imply that ϵC;QðMð0; SÞÞ ¼ 1

2
.

It turns out that equatorial von Neumann measurements
maximize Eq. (2); i.e., they are the most difficult to
simulate. That explains why we obtain identical results
for ϵC, ϵQ, since both quantities coincide when used to
compare two different dichotomic measurements (see the
Supplemental Material [14]). From Eq. (6), it is also clear
that any pure state whose energy distribution f⋆ðEÞdE ∈ B
maximizes Eq. (6) allows us to simulate the whole set
Mð2Þ with accuracy 1 − τðB; SÞ, or, equivalently,
ϵC;QðB; SÞ ¼ ϵC;Qðff⋆ðEÞdEg; SÞ. Notice that this relation
was derived for qubit target systems; we should not expect
it to hold in higher dimensions.
In the next lines, we will compute the value of τðB; SÞ for

two cases of practical interest: finite dimensionality and
finite energy.
Picture an experimental scenario where we are allowed

to prepare our measurement device’s battery in any super-
position of d discrete energy levels jΨiB ¼ P

d−1
k¼0 ckjEkiB.

From Eq. (6), it is clear that the optimal energy spectrum
HB for our battery must be resonant with HS, i.e., Ek ¼
E0 þ kΔ [19]. The problem of computing τðCd; SÞ hence
reduces to maximizing

P
d−2
k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkpkþ1

p
over all discrete

distributions fpkgd−1k¼0.
From the seminal papers of Aharonov and collaborators

[20], one is tempted to assume that the optimal state should
have an equal superposition of all energy levels, as this
is expected to better fix a time frame of reference.
Surprisingly, in the Supplemental Material [14], we show
that such is not the case: the solution of this problem is
τðCd; SÞ ¼ cos ðπ=ðdþ 1ÞÞ, and thus,

ϵC;QðMðCd; SÞ;Mð2ÞÞ ¼ 1

2

�
1 − cos

�
π

dþ 1

��
: (7)

MðCd; SÞ, therefore, tends to Mð2Þ as Oð1=d2Þ.
Consider now a scenario where, in principle, we can

prepare any initial battery state, but we do not wish to spend
too much energy in the process. Note that, if we set the
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origin of energies to zero (E0 ¼ 0) in the previous example,
the average energy of the d-level states maximizing Eq. (6)
grows linearly with d. This makes one wonder whether that
much energy is actually needed in order to reach that degree
of measurement accuracy. In other words: how well can
we approximate Mð2Þ when our battery is infinite
dimensional, but its average energy is bounded?
CallMðĒ; 2Þ the set of two-level POVMs attainable via a

measurement device with a battery of average energy smaller
than or equal to Ē > 0. To compute ϵC;QðMðĒ; 2Þ;Mð2ÞÞ,
we must maximize Eq. (6) under the constraintR∞
0 dEfðEÞE ≤ Ē. It is easy to see that the optimal energy
density fðEÞdE must be discrete and resonant with the
system, i.e., fðEÞ ¼ P∞

k¼0 pkδðE − kΔÞ. The correspond-
ing probabilities pk must then satisfy

X∞
k¼0

pkkΔ ≤ Ē. (8)

Maximizing Eq. (6) with respect to this constraint leads to
τðĒÞ ¼ φðĒ=ΔÞ, with

φðzÞ ¼ min
λ≥0

zþ fμ∶jμ−1;1 ¼ 2λg
2λ

; (9)

where jn;1 denotes the first zero of JnðyÞ, the Bessel function
of the first kind. This follows from the theory of continuous
fractions [21] (see the Supplemental Material [14] for a
proof). For z ≫ 1, φðzÞ behaves as φðzÞ ≈ 1 − ð0.9468=z2Þ
[22]. Consequently,

ϵC;QðMðĒ; 2Þ;Mð2ÞÞ ¼ 1

2
f1 − φðĒ=ΔÞg ≈ 0.4734Δ2

Ē2
;

(10)

for Ē ≫ Δ. Let λ⋆ > 0 denote the minimizer in Eq. (9).
Then, the quantum state whose energy density maximizes
Eq. (6) can be expressed in the number basis as
jΨ⋆̄

Ei ¼
P∞

k¼0 ckjki, where HBjki ¼ Δkjki and the coef-
ficients fckg are given by the recurrence formula:

ckþ1 ¼
kþ fμ∶jμ−1;1 ¼ 2λ⋆g

λ⋆ ck − ck−1: (11)

We will refer to fjΨ⋆̄
Ei∶Ē ∈ Rþg as power states.

Figure 2 shows a comparison between the performance
of power states against coherent states jαi ¼ e−ðjαj2=2Þ×P∞

n¼0ðαk=
ffiffiffiffi
k!

p Þjki, with energy hαjHBjαi ¼ jαj2Δ ¼ Ē.
The plot shows that, as soon as Ē=Δ≳ 10, the newly
defined states become considerably advantageous. This
was expected, given that τðjαiÞ ≈ 1 − ðΔ=8ĒÞ, for α ≫ 1
[23]. It is, therefore, an interesting question whether current
technology allows producing power states in the lab.
The results discussed above are “global”—they refer to

the distance between the set of POVMs that one can

perform with a constrained battery and the set of all
conceivable POVMs. They leave open, though, the problem
of characterizing which two-level POVMs M ∈ Mð2Þ can
be realized with a battery of finite energy spectrum or
bounded average energy. More generally, given a POVM
M ∈ MðdÞ, we would like to decide if such a POVM
can be implemented in a d-dimensional target with a
nonconstant energy operator HS with a battery of
Hamiltonian HB.
To answer the above question, in the Supplemental

Material [14], we show how to formulate the characteri-
zation of MðCd; 2Þ as a semidefinite program [24] involv-
ingOðdÞ 2 × 2 complex matrices. Due to this small scaling,
using standard convex optimization packages like YALMIP

and SEDUMI [25,26], we found that a normal desktop can
decide if an arbitrary 3-outcome POVM M belongs to
MðCd; 2Þ, for d ¼ 4000. As shown in the Supplemental
Material [14], the algorithm can be easily adapted to
characterize the set MðCd; d0Þ for arbitrary (given)
Hamiltonians HB, HS.
Characterizing MðĒ; 2Þ turned out to be more difficult.

The approach thatwe followedwas todefine two sequencesof
inner (fMI

dðĒ;2Þg) and outer (fMO
d ðĒ;2Þg) approximations

ofMðĒ; 2Þ, i.e.,MI
dðĒ;2Þ⊂MðĒ;2Þ⊂MO

d ðĒ;2Þ⊂Mð2Þ,
with limd→∞MI

dðĒ; 2Þ ¼ limd→∞MO
d ðĒ; 2Þ ¼ MðĒ; 2Þ.

Each of these approximations can be computed via a semi-
definite program involving OðdÞ 2 × 2 positive semidefinite
matrices.Moreover, the speedofconvergenceof the scheme is
bounded byOðĒ=dΔÞ. This algorithm can be adapted as well
to describe effective measurements in multilevel quantum
targets.
In this Letter, we have investigated how the energy

spectrum of a quantummeasurement device limits what can

FIG. 2. Power states against coherent states. The plot shows the
accuracy in reproducingMð2Þ for different values of the average
energy Ē when our resource states are either the power states
jΨ⋆

Ei or coherent states jαi.
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be observed in a quantum system with nontrivial energy
operator. We have provided efficient algorithms to char-
acterize the set of effective measurements for arbitrary
target and battery systems. Moreover, we have quantified
exactly the maximum efficiency of measurement devices
acting over a two-level target as a function of their
dimensionality and energy content. In this respect, we
found that coherent states constitute a bad resource for high
precision quantum measurements with bounded energy, as
compared to the optimal power states. Designing a laser
that produces power rather than coherent states is hence an
important problem for those interested in the control of
two-level systems.
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