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We theoretically demonstrate the generation of dark soliton trains in a one-dimensional exciton-polariton
condensate within experimentally accessible schemes. In particular, we show that the frequency of the train
can be finely tuned fully optically or electrically to provide a stable and efficient output signal modulation.
Taking the polarization of the condensate into account, we elucidate the possibility of forming on-demand
half-soliton trains.
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Introduction.—The first unambiguous observation of
Bose-Einstein condensation in dilute Bose gases at low
temperature [1] set off an avalanche of research on this new
state of matter. The lowest energy fraction of a degenerated
Bose gas occupying low energymodes obeys the property of
vanishing viscosity and does not take part in the dissipation
of momentum, a phenomenon referred to as superfluidity
[2]. This holds true as long as the condensate is only slightly
disturbed [3]. As soon as strong dynamical density modu-
lations occur, e.g., when the condensate is abruptly brought
out of its equilibrium through an external perturbation, it
responds in a unique way by generating robust elementary
excitations such as solitons or vortices [4].
More recently the concept of macroscopically populated

single particle states [5,6] was transposed to a variety of
mesoscopic systems such as cavity photons [7,8], magnons
[9], indirect excitons [10], exciton-polaritons (polaritons)
[11], and even classical waves [12]. In the proper regime,
all of those systems can be described by complex-valued
order parameters—the condensate wave functions—with
dynamics governedbynonlinearSchrödinger-type equations
such as the Gross-Pitaevskii [13] and the complex Ginzburg-
Landau equation [14]. Here the nonlinearity associated with
self-interactions plays an essential role in the possible states
with orwithout excitations, their dynamics, and, in particular,
their stability [15]. Similarly, in the slowly varying envelope
approximation, light waves can be approximated by
complex-valued wave functions governed by nonlinear
Schrödinger-type equations that are formally comparable
to those of Bose-Einstein condensates and thus show analog
dynamical behavior such as stationary and moving optical
dark or bright solitons in quasi-1D settings [16,17].
For several decades lightwaves have been utilized in awide

range of applications such as in nonlinear fiber optic com-
munication [16,18–20] while research on new technologies is
thriving, in particular, on elementary circuit components such
as optical diodes [21], transistors [22], or realizations of
analog devices involving exciton-polariton condensates
[23,24] and conceptually on optical computing schemes [25].

Exciton-polaritons are half-light half-matter quasipar-
ticles formed in semiconductor microcavities and allow
high-speed propagation from their photonic part while
having strong self-interaction from their excitonic fraction.
They are extremely promising from both fundamental and
technological points of view given the ease it provides to
finely control the parameters of their condensate now
routinely produced in different geometries (see, e.g.,
Ref. [26]). Indeed, state-of-the-art technology allows us
to etch any sample shape to sculpt the confining potential
seen by the condensate at will. It explains the plethora of
recent proposals [27–34] for polariton devices, some of
which have been experimentally implemented [23,24,35].
The main advantage with respect to standard optical
systems in nonlinear media is the very large exciton-
mediated nonlinear response of the system reducing the
required input power by orders of magnitude. Recently,
there was a growing interest in demonstrating the formation
of (spin-polarized) topological defects [36–40] that are now
envisaged as stable information carriers [41–43] within a
young field of research called spin-optronics [44].
In this Letter, we present experimentally accessible

schemes for the intended generation and manipulation of
stable and fully controllable wave patterns within a quasi-
1D microcavity. We demonstrate the on-demand formation
of dark soliton trains within a quasi-1D channel and the
optical and electrical dynamical control of their frequency.
Finally, we demonstrate the possibility of controlling the
polarization of the soliton trains.
The model.—We consider the system modeled in Fig. 1,

namely a wire-shaped microcavity similar to the one
implemented in Ref. [45] that bounds the polaritons to a
quasi-1D channel. A metallic contact is embed over
half of the sample to form a potential step seen by the
polaritons and whose amplitude can be tuned on demand
applying an electric field [46]. The spinor polariton field
ψ ¼ ðψþ;ψ−ÞT evolves along a set of effectively 1D
complex Ginzburg-Landau equations coupled to a rate
equation for the excitonic reservoir [46,47],
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This model describes in a simple way the phenomenology
of the condensate formation under nonresonant pumping.
We assume a parabolic dispersion of polaritons associated
with an effective mass m ¼ 5 × 10−5m0, where m0 is that
of the free electron and a decay rate Γ ¼ 1=100 ps−1.
Uðx; tÞ ¼ ½UðtÞ þ U0�HðxÞ, where HðxÞ is the Heaviside
function, U0 ¼ −0.5 meV is the step height induced by the
presence of the metal solely, and UðtÞ is the potential
landscape imposed by the external electric field. α1 ¼
6xEba2B=S ¼ 1.2 × 10−3 meV · μm and α2 ¼ −0.1α1 are,
respectively, the parallel and antiparallel spin interaction
strength given that x, Eb, and aB are the excitonic fraction,
binding energy, and Bohr radius, respectively, and S is the
pump spot area. Hx ¼ 0.01 meV is the strength of the
effective magnetic field induced by the energy splitting
between TE and TM eigenmodes that couples the spin
components [35]. The excitonic reservoir characterized by
the decay rate ΓR ¼ 1=400 ps−1 is driven by the pump term
P ¼ AP expð−x2=σ2Þ, where σ ¼ 20 μm and AP is taken in
the range of hundreds of ΓR. It exchanges particles with the
polariton condensate at a rate γ ¼ 2 × 10−2ΓR.
We note that, while the stimulated scattering is taken into

account by Eqs. (1)–(3), energy relaxation processes
dominant under the pump spot, apart from the lifetime
induced decay of the interactions energy, are neglected in
this framework and could be treated, e.g., within the
formalisms of Refs. [48,49]. Energy relaxation would

not impact our results qualitatively especially for the finite
pump spot size we consider here.
Soliton train generation.—As shown in Ref. [4], a local

abrupt change of self-interaction strength of the condensate
leads to the formation of a stable and regular dark soliton
train. When the flow in the direction of decreasing inter-
action due to particle repulsions is locally crossing the speed
of sound csðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðxÞ=mp

, where μðxÞ ¼ α1nðxÞ (for a
scalar condensate) at the point of abrupt change in self-
interactions, solitons are formed from dispersive shock
waves [50] that dissipate the local excess of energy. In
polariton condensates the interaction strength α1 is varied
tuning the exciton or photon detuning and therefore the
excitonic fraction, but it can hardly bemade inhomogeneous
within a given sample nor tuned dynamically. A valuable
alternative we follow here is to introduce the tunable
potential step Uðx; tÞ in Eqs. (1) and (2). The mechanism
for soliton generation is the following (see Ref. [51] for a
more details). Let us suppose we have a homogeneous
density n0 at t ¼ 0 and neglect the finite lifetime and
pumping of quasiparticles and the geometry of our pump
spot. Then, taking the potentialU stepwise for all following
t > 0, we get close to the breaking point at x ¼ 0, the density
n1 for x ¼ 0− and n2 as x ¼ 0þ, and we say n1 ¼ kn2, with
1 > k > 0. Using momentum and mass conservation at
x ¼ 0, we find the simple criterion 0.6404 > k to break the
speed of sound in the region x < 0, which is in good
agreement with our numerical results. In the regime of
soliton-train generation, the train frequency ν increases with
themagnitude of the potential step [51] as the corresponding
increase of mass passing the step at x ¼ 0 allows a more
frequent breaking of the local speed of sound. This is
analogous to the situation of a superfluid passing an obstacle
above criticality for which greater mass transport is equiv-
alent to a higher number of generated vortices in 2D [52].
For a given metal type and deposition thickness on top of

the microcavity, Tamm plasmon-polariton modes [53] were
predicted to form at the interface inducing a local redshift of
the polariton resonances of amplitude U0 and the required
potential step. We note that in the absence of plasmon, the
interface would form a Schottky junction known to blue
detune the polaritonmodes [54]. The application of a voltage
to the metal produces the additional gate redshift UðtÞ
through the excitonic Stark effect up to a few meVs for
voltages lying in the range of tens of kV=cm [55] and
standing for the input modulation of the polariton conden-
sate. The nonresonant excitation of the system is crucial since
in this context the condensate phase is free to evolve under
the pump spot in contrast to a resonant injection scheme that
would imprint the phase preventing the onset of solitons.
Optical control.—Let us start with the simplest passive

configuration where no voltage is applied and therefore the
potential step is fixed. We switch on the pump laser focused
on the step at t ¼ 0 and wait for the steady state to be
reached. The reservoir is filled by the incoherent pump and
the stimulation towards the lowest polariton energy state

FIG. 1 (color online). Model of a potential sample consisting in
a quasi-1D microcavity [distributed Bragg reflectors (DBR)]
embedding a metallic deposition over half of its length to form a
potential step. A gate voltage can be applied to the metal to tune
dynamically the step amplitude.
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occurs, forming the condensate with a chemical potential
μ ¼ ðα1 þ α2Þn=2 −Hx=2 (corresponding to the measur-
able blueshift of the polariton emission), where n ¼
jψþj2 þ jψ−j2 ¼ nþ þ n− is the total polariton density.
Given the interrelation α1 > α2, the condensate interaction
energy is minimized for a linear polarization, meaning that
nþ ¼ n−, and the condensate is said to be antiferromagnetic
[56]. The linear polarization orientation is homogeneous at
zero temperature and fixed by the Hx contribution, namely,
along the axis of the wire. In our model we trigger the
condensation on the x-polarized ground state with weak
initial populations n0�. Figure 2 shows numerical solutions to
Eqs. (1)–(3). We depict the chemical potential μðx; tÞ for
crescent pump amplitudes AP. We clearly see the decrease in
the train frequency ν with increasing pump power [Figs. 2(a)
and 2(b)] until the train vanishes [Fig. 2(c)].
Thecondensateheals fromthestep forminganasymmetric

gray soliton resulting from the local velocity gradient, as it
happens, e.g., at the boundaries of a condensate trapped in a
square potential. The depth of the soliton is imposed by the
local background density and velocity. For a high enough
background density, the flow is superfluid (v < cs) both
around the step and within the soliton that remains pinned
to the step preventing the train onset [Fig. 2(c)]. For lower
densities, the speed of sound can be surpassed at the
soliton core, which allows the condensate to dissipate the
local excess of energy via a dispersive shock wave [50] (see
movies in the Supplemental Material [51]) that releases the
soliton to the side where the background flow is the highest.
Then it takes some time for the condensate to form a new
soliton. The higher the density, the stiffer the condensate
and, therefore, the more time it takes to form a new density
depletion. This response determines the quasilinear train
frequency ν dependence over the chemical potential shown
in the Supplemental Material [51].
Our results demonstrate the possibility to modulate

passively an optical signal via the formation of stable dark

solitons varying the pump amplitude. The dark soliton
signals shall then be detected experimentally at the output
via one of the schemes proposed in the context of nonlinear
optics [57] to encode information. Indeed, as proposed in
Ref. [58], soliton trains can be used to store numbers
determined uniquely by an adjustable ν. So far, most of the
device proposals involving microcavity polaritons have
focused on signal transmission but never on its modulation.
Nonetheless, as one can see, the train frequencies lie in the
range of THz allowing us to perform very high-speed
processing due to the polariton photonic part combined
with a large exciton-mediated nonlinear response.
In Fig. 2(d), we show an example of sinusoidal input

power modulation that leads to a dynamical variation of ν or
a modulation of the output on demand to produce useful
wave packets. The main advantage of this all-optical input
modulation scheme is that it allows us to reach high-speed
variation of ν while the drawback is that the background
density of the condensate is obviously affected as well.
Finally, we note that this setup involving a fixed potential
step does not specifically require a metallic deposition. A
sample split in two parts with slightly different lateral width
might be sufficient to reproduce the effects discussed above.
Electric control.—Now we consider the case where the

pump power is fixed and, in addition, an electric field is
applied to the metallic contact to modulate the potential
step height. Under such assumptions, the chemical potential
μ is globally fixed. The higher the step (the electric field), the
larger the density gradient and, hence, one encounters a
greater mass transport towards lower energy regions. So,
similarly to Ref. [52], we obtain an increase in dark soliton
train frequency, as shown in Ref. [51]. To demonstrate this
behavior, in Fig. 3(a) we show the results obtained by ramping
down linearly the potential step from 0 to −1.5 meV, which
corresponds to an increase in the electric field amplitude. We
clearly see the linear increase in ν versus time.

FIG. 2 (color online). Optical control. (a)–(c) Results obtained by pumping over the potential step with increasing pump amplitude of
200ΓR, 375ΓR, and 600ΓR, respectively. Here, we monitor μðx; tÞ (meV) in the color map. (d) Sinusoidal modulation of the pump
amplitude between 0 and 500ΓR and with a period T ¼ 100 ps resulting in signal frequency modulation.

PRL 112, 140405 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

140405-3



Similarly to the results of Fig. 2(d), in Fig. 3(b) we show
results obtained from a sinusoidal modulation of the potential
step amplitude producing an efficient dynamical modulation
of the output signal in the form of wave packets. Such an
electric control of the polariton flow has the advantage of
impacting weakly on the background density, but there might
be some technological limitation on the switching speed.
Polarization control.—So far, we have discussed a

phenomenology that could be reproduced using a scalar
condensate without any need for its spinor character. Indeed,
we have considered the ideal case of a perfectly linearly
polarized condensate with no polarization symmetry break-
ing, namely, nþðxÞ ¼ n−ðxÞ for any x position. The conse-
quence is that the dark solitons formed in one spin
component are perfectly overlapping with the ones in the
other component and are behaving as scalar ones. However,
in real experimental situations, the fluctuations brought by the
structural disorder or the background noise can affect the
linear polarization of the condensate leading to local inho-
mogeneities slightly breaking the polarization symmetry or
the equivalence between the two spin components. As
discussed in Ref. [42], these fluctuations can lead to the
separation of dark solitons in each component to form pairs
of half-solitons [39,40]. As soon as they are split, they will
repel each other under the condition α2 < 0 and start to feel
an effective magnetic force imposed by Hx and be accel-
erated or slowed down depending on their linear polarization
texture [42]. This effect produced by local inhomogeneities
or random processes would obviously be harmful to the
formation of a deterministic spin signal. However, as was
observed experimentally in Ref. [59], using a polarized
excitation laser can lead to the formation of a circularly or
elliptically polarized condensate due to the long characteristic
spin relaxation times of excitons. In Fig. 4, we show results
capitalizing on this effect to produce a useful spin signal.

We have modeled a slightly elliptically polarized nonreso-
nant pump introducing two different reservoir or condensate
transfer rates γ1 and γ2 in Eqs. (1) and (2). We have adjusted
the ratio γ2=γ1 to 0.90, 1.11, and 0.99 in Figs. 4(a)–4(c),
respectively. The color map shows the degree of circular
polarization ρcðx; tÞ ¼ ðnþ − n−Þ=ðnþ þ n−Þ of the polar-
iton emission.We see that theweak ensuingdensity imbalance
between the two spin components of the condensate leads to a
well-defined polarization symmetry breaking inducing either
the formation of trains of pairs of half-solitons [Fig. 4(c)] or
trains of half-solitons with a well-defined polarization for
larger imbalances [Figs. 4(a) and 4(b)]. It means that not
only the frequency of the trains can be finely tuned, but also
their polarization by variation of the input polarization. It
provides another degree of freedom to code information.
Conclusions.—We have shown the strong potential of

microcavities for high-speed optical signal modulation and
information coding. Our proposal involves the all-optical or
electric control of dark soliton trains within realistic scheme.
We have demonstrated the possibility to tune both the train
frequency and its polarization. The present concept could not
only play a central role at the heart of future high-speed
polariton circuits within the rapidly expanding field of spin-
optronics but also allow the very first observation of dark
soliton trains in a quantum fluid.
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the step between 0 and −1.5 meV with a period of 50 ps.

FIG. 4 (color online). Control over the polarization of the trains.
The color map shows the degree of circular polarization ρc.
(a) γ2=γ1 ¼ 0.90, (b) γ2=γ1 ¼ 1.11, and (c) γ2=γ1 ¼ 0.99.
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