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We predict a generic signature of quantum interference in many-body bosonic systems resulting in a
coherent enhancement of the average return probability in Fock space. This enhancement is robust with
respect to variations of external parameters even though it represents a dynamical manifestation of the
delicate superposition principle in Fock space. It is a genuine quantum many-body effect that lies beyond
the reach of any mean-field approach. Using a semiclassical approach based on interfering paths in
Fock space, we calculate the magnitude of the backscattering peak and its dependence on gauge fields
that break time-reversal invariance. We confirm our predictions by comparing them to exact quantum
evolution probabilities in Bose-Hubbard models, and discuss their relevance in the context of many-body
thermalization.
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The existence of a superposition principle for quantum
states is a cornerstone in our picture of the physical world,
with observable implications in the form of coherent
phenomena that have been experimentally demonstrated
with impressive precision during the last century [1–3].
Within the context of linear wave equations, quantum super-
position effects represent particular cases of the general
phenomenon of wave coherence. For quantum systems
described by the single-particle Schrödinger equation, this
analogy between quantum and classical waves was exp-
loited to demonstrate coherent quantum effects, such as
Anderson localization in disordered metals [4] or coherent
backscattering (CBS) [5], by using classical (in particular
electromagnetic) wave analogues [6–8].
In thequantumdescriptionofmany-body systems, such an

analogy between quantum dynamics and classical wave
phenomena does not hold.Within a first-quantized approach,
the quantum mechanical description of a system of N
interacting particles in D dimensions requires us to extend
the space in which the Schrödinger field ψð~r1;…; ~rN; tÞ is
defined toND dimensions.We can still identify the quantum
superposition principle with the linearity of the many-body
Schrödinger equation, but the latter does no longer describes
a classical wave in real D-dimensional space: many-body
quantum interference is a high-dimensional phenomenon.
This observation remains true even if we adopt a real-

space description in terms of the quantum field ψ̂ð~r; tÞ.
Indeed, ψ̂ð~r; tÞ is an operator instead of a complex amplitude
and does not represent a quantum state. Nevertheless,
quantum fields are a suitable starting point to implement
approximations to the full many-body problem in terms of
classical wave equations for single particles, which effec-
tively amounts to the substitution ψ̂ð~r; tÞ → ψð~r; tÞ at the
level of the Heisenberg equations of motion for ψ̂ð~r; tÞ. This

approach leads to the mean-field Gross-Pitaevskii equation
(GPE) [9] and also to the truncated Wigner method [10–13]
with its quantum (Wigner-Moyal) corrections [14]. Since
theGPE is a classical field equation, its nonlinearity does not
pose a conflict with the linearity of quantum evolution. For
the same reasons, however, the ψð~r; tÞ field cannot represent
a quantum state and its physical meaning requires further
interpretation as a condensate fraction or order parameter.
In particular, interference effects resulting from the (weakly
nonlinear) GPE are not a consequence of many-body inter-
ference; they are classical wave effects proper of a classical
field equation and are generically suppressed already for
small interactions [15–18].
In this Letter we report a semiclassical description of

the quantum mechanism responsible for many-body inter-
ference phenomena in interacting bosonic systems, which
is schematically illustrated in Fig. 1. Our approach is based
on coherent sums over multiple solutions of the GPE in
occupation number space. It predicts quantum coherence
effects that are in quantitative agreement with numerical
simulations of Bose-Hubbard models describing cold
atoms in optical lattices.
Since many-body interference is most visible in genuine

many-body observables (i.e., which cannot bewritten as exp-
ectation values of single-particle operators), wewill study, as
a representative example, the microscopic evolution proba-
bility from one many-body state to another one. Following
standard techniques [19], we introduce a discrete and ortho-
gonal but otherwise arbitrary set of L single-particle states
(“orbitals”) χ1;…; χL. The associated set of commuting
bosonic occupationnumber operators n̂α has common (Fock)
eigenstates jni ¼ jn1;…; nLi and integer eigenvalues nα
denoting the number of particles in each orbital χα. The
transition probability between Fock states at time t reads then
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PðnðfÞ;nðiÞ; tÞ ¼ jhnðfÞjÛðtÞjnðiÞij2; (1)

with ÛðtÞ≡ expð−iĤt=ℏÞ and the general many-body
Hamiltonian exhibiting two-body interaction

Ĥ ¼
X
αβ

hαβâ
†
αâβ þ

1

2

X
αβησ

Vαβησâ
†
αâβâ

†
ηâσ; (2)

which is expressed in terms of the ladder operators âαðâ†αÞ
that annihilate (create) a particle in the orbital χα (with
n̂α ¼ â†αâα). We shall later on refer to the more specific case
of the Bose-Hubbard (BH) model

ĤBH ¼
X
α

ϵαn̂α − J
X
α

ðeiϕâ†αâαþ1 þ e−iϕâ†αþ1âαÞ

þ U
2

X
α

n̂αðn̂α − 1Þ; (3)

which describes, e.g., cold atoms in optical lattices.
Our calculation (see the Supplemental Material [20] for

details) is based on an asymptotic expansion of the many-
body propagator,

KscðnðfÞ;nðiÞ; tÞ≃ hnðfÞjÛðtÞjnðiÞi; (4)

which is formally valid for nði;fÞα ≫ 1. To this end, we have
to consider all solutions (indexed by γ)

ψðγÞðsÞ≡ ψðγÞðs;nðfÞ;nðiÞ; tÞ≡ ½ψ ðγÞ
1 ðsÞ;…;ψ ðγÞ

L ðsÞ� (5)

of the mean-field GPE

iℏ
∂
∂sψα ¼

X
β

hαβψβ þ
X
βησ

Vαβησψβψ
�
ηψσ (6)

that instead of initial conditions satisfy the bilateral
boundary (or shooting) conditions jψαð0Þj2 ¼ nðiÞα þ 1=2
and jψαðtÞj2 ¼ nðfÞα þ 1=2 and have argψα¼1ð0Þ ¼ 0 (see
the Supplemental Material [20]). In terms of those solutions
ψðγÞðsÞ, the semiclassical propagator is then expressed as

KscðnðfÞ;nðiÞ; tÞ ¼
X
γ

AðγÞ exp½iRðγÞ þ iπΦðγÞ=4�; (7)

where, for each solution, the semiclassical amplitude

AðγÞðnðfÞ;nðiÞ; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� det0 12π
∂2RðγÞðnðfÞ;nðiÞ; tÞ

∂nðfÞ∂nðiÞ

����
s

(8)

is given by the (dimensionless) classical action

RðγÞ ¼
Z

t

0

�X
α

θðγÞα ðsÞ_IðγÞα ðsÞ −H½ψðγÞðsÞ�=ℏ
�
ds (9)

with ψ ðγÞ
α ðsÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
IðγÞα ðsÞ

q
exp½iθðγÞα ðsÞ� and

HðψÞ ¼
X
αβ

hαβψ�
αψβ þ

1

2

X
αβησ

Vαβησψ
�
αψ

�
ηψβψσ (10)

the classical (mean-field) Hamiltonian. The index ΦðγÞ

counts the number of conjugate points along the trajec-
tory γ. As indicated by det0, the derivatives in Eq. (8) are
to be taken with respect to nði=fÞ2 ;…; nði=fÞL with nði=fÞ1

being fixed by the total number of particles (see the
Supplemental Material [20]).
The heuristic use of HðψÞ as the classical limit in

bosonic systems has a long history [21] and lies behind
most studies of the quantum-classical correspondence in
Bose-Hubbard models [12–14,22]. However, a rigorous
approach in which a semiclassical propagator is constructed
by a stationary phase analysis of the exact path-integral
representation of ÛðtÞ in the spirit of the van Vleck–
Gutzwiller approach for first-quantized systems [23] was
missing in previous studies. Importantly, our propagator
Ksc is valid also if the classical limit is nonintegrable, thus
going beyond the successful WKB method of Refs. [24,25]
for L ¼ 2 and the Einstein-Brillouin-Keller approach of
Ref. [22] for L ¼ 3. Contrary to previous classical and
quasiclassical approaches (including the standard imple-
mentations of the truncated Wigner method [10–13]), the
classical information appears in Eq. (7) in terms of a
boundary value problem generally exhibiting many solu-
tions, which make interference explicit, instead of an initial
value problem with a unique solution.
Substituting Eqs. (4) and (7) into Eq. (1) yields

PðnðfÞ;nðiÞ; tÞ ¼
X
γγ0

AðγÞAðγ0ÞeiðR
ðγÞ−Rðγ0ÞÞ: (11)

n(i) n(f) =n(f) n(i)

FIG. 1 (color online). Illustration of coherent backscattering in
Fock space. A many-body system, represented here by a Bose-
Hubbard chain with L ¼ 5 sites and N ¼ 6 particles, is prepared

in a well-defined initial Fock state nðiÞ ¼ ðnðiÞ1 ;…; nðiÞL Þ (upper
part). After a given evolution time t, the final populations are
found to be nðfÞ (lower parts). A solution γ of the Gross-Pitaevskii
equation joining nðiÞ with nðfÞ contributes with an amplitude
Kγ ≃ AγeiRγ to this process, where Rγ is a classical action. Under
averaging, only pairs of identical Fock space trajectories yield
a systematically nonvanishing contribution to the probability
P ¼ j

P
γKγj2 when nðfÞ ≠ nðiÞ (left column). For nðfÞ ¼ nðiÞ (right

column), however, constructive interference additionally arises
if trajectories are paired with their time-reversed counterparts
(dot-dashed green line). This gives rise to a coherent enhance-
ment of the probability to detect the system in the initial Fock
state after the evolution, as compared to other states with
comparable distributions of the population.
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From the typical scaling RðγÞ − Rðγ0Þ ∝ N of the action
differences, the contributions to the double sum in Eq. (11)
contain an exponentially increasing number of highly
oscillatory terms that tend to cancel each other.
Averaging, e.g., over a disorder potential that is contained
in the matrix elements hαβ, then suppresses quasirandom
contributions from pairs of longer, unrelated paths γ ≠ γ0

and selects contributions from those pairs of classical
solutions that generically exhibit action quasidegeneracies:
RðγÞ − Rðγ0Þ ∼ 0. The first nonvanishing contribution to the
average transition probability (denoted by a bar, as is any
other averaged expression) is then given by the incoherent
(γ ¼ γ0) part of the double sum,

P̄clðnðfÞ;nðiÞ; tÞ ¼
X
γ

jAðγÞj2

¼
Z

2π

0

dθ2
2π

� � �
Z

2π

0

dθL
2π

×
YL
α¼2

δ

�
nðfÞα þ 1

2
− jψαðnðiÞ; θ; tÞj2

�
;

(12)

where ψðnðiÞ; θ; tÞ is the unique solution of the GPE (6)
with initial conditions satisfying jψ ðiÞ

α j2 ¼ nðiÞα þ 1=2 and
argψ ðiÞ

α ¼ θα with θα¼1 ¼ 0 [26]. Equation (12) is the
averaged transition probability obtained using the classical
truncated Wigner method [27].
Having identified P̄cl as the classical probability, any

other robust contribution to P̄ is necessarily a signature of
many-body quantum interference. As shown schematically
in Fig. 1, having exact and generic action degeneracies for
γ ≠ γ0 requires the presence of time-reversal invariance
(TRI), which means that for each solution ψðγÞðsÞ of the
GPE one can find suitable phases ωα such that its time-
reversal partner ψðT γÞðsÞ with

ψ ðT γÞ
α ðs;nðfÞ;nðiÞ; tÞ≡ eiωα ½ψ ðγÞ

α ðt − s;nðiÞ;nðfÞ; tÞ�� (13)

is also a solution of the GPE but with the initial and final
conditions interchanged. In that case, it follows from Eq. (9)
that γ and T γ have the same classical actions and semi-
classical amplitudes.Obviously, as the trajectories γ, γ0 in the
double sum (11) refer to a specific nðiÞ and a specific nðfÞ, a
pairing γ0 ¼ T γ is only possible if nðfÞ ¼ nðiÞ [28]. Finally,
to allow for long-path contributions such that generically
γ ≠ T γ the evolution time has to be considerably larger
than the hopping time scale τ ¼ ℏ=J, which corresponds to
the inverse Rabi frequency between adjacent sites (see the
Supplemental Material [20]). For t≲ τ, trajectories describ-
ing a pure phase evolution of the complex classical on-site
amplitudes without altering the individual site populations
dominantly contribute to Kscðn;n; tÞ. Those trajectories
are, in the population space, obviously identical with their

time-reversed counterpart, i.e., self-retracting, and hence
no partner γ0 with γ0 ¼ T γ ≠ γ exists.
We therefore obtain

P̄ðnðfÞ;nðiÞ;tÞ≃
�
P̄clðnðfÞ;nðiÞ;tÞ if t≲τ
ð1þδÞP̄clðnðfÞ;nðiÞ;tÞ if t≫ τ

(14)

with δ ¼ δnðfÞ;nðiÞ in the presence of TRI and 0 otherwise.
Equation (14) reflects CBS in Fock space, i.e., a coherent
enhancement of the averaged quantum probability of return
in Fock space over the classical value due to quantum
many-body interference. Resulting from phase cancella-
tions among oscillatory functions, this enhancement is non-
perturbative in the effective Planck constant ℏeff ∼ N−1.
It can be regarded as a many-body generalization of the
single-particle weak localization effect in quantum trans-
port [5], which is also of subleading order compared to the
classical contribution.
To confirm our result, Eq. (14), we performed extensive

numerical calculations for the BH model defined in Eq. (3)
for chain and ring topologies. We defined our ensemble
average through independent variations of the on-site
energies ϵα, which are randomly selected from the interval
0 < ϵα < W. Taking advantage of the literature concerned
with classical equilibration and chaos for this kind of
Hamiltonian [29–31], we fixed the numerical values of the
free parameters U=J and W=J such that the classical phase
space has a dominant chaotic component. The quantum
transition probability P̄ðnðfÞ;nðiÞ; tÞ, which corresponds to
the expectation value of the many-body projector onto the
Fock state nðfÞ, is then computed with a Runge-Kutta
solver, using the exact quantum propagation of the initial
state in full Fock space, followed by the disorder average
over the on-site energies. The classical probability
P̄clðnðfÞ;nðiÞ; tÞ, on the other hand, is directly computed
from Eq. (12) where, for a given random choice of the on-
site energies, ψðnðiÞ; θ; tÞ is determined by the numerical
solution of the L-dimensional GPE.
In Fig. 2 we show the time dependence of P̄ and P̄cl as a

function of nðfÞ for the BH model (3) with L ¼ 5, N ¼ 14,
and a chain topology (i.e., the site 1 is not connected to the
site L by a single hopping matrix element) starting from a
generically chosen initial statenðiÞ ¼ ð3; 2; 3; 2; 4Þ. After the
transient initial regime inwhich quantumand classical results
resemble each other, the quantum transition probabilities
clearly display, for t≳ 5τ, a stationaryCBS peak at the initial
state nðiÞ on top of a roughly constant background, in quan-
titative agreement with Eq. (14). This peak is not reproduced
by the classical probabilities ruling out short-time effects
or self-trapping due to rare realizations of the random on-site
energies as alternative origins of the enhancement.
Figure 3 shows the CBS peak at t ¼ 10τ for a BH ring

(see inset) with L ¼ 6 sites (in which a hopping matrix
element connects the site 1 to the site L) in the presence of
nonvanishing hopping phases ϕ [see Eq. (3)], which break
TRI. We clearly see the suppression of the CBS peak in the
absence of TRI at ϕ ¼ π=8 and π=4. For ϕ ¼ π=2, on the
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other hand, TRI is again established using ωα ¼ απ in
Eq. (13) and the CBS peak reappears.
Experimentally, CBS in many-body space could possibly

be observed with ultracold bosonic atoms. The specific ring
geometry of Fig. 3 could be realized in hexagonal (gra-
phene) optical lattices [32]. A tightly focused red-detuned
laser beam could be used in order to isolate an individual
hexagon from the lattice. Displacing the focus of the laser
beam with respect to the geometric center of this hexagon
would allow one to load this ring in a nonuniform manner,
i.e., such that the atomic populations differ from site to site.
While the ring is initially to be loaded in the deep Mott
insulator regime, in which intersite hopping along the ring
is negligibly small, a sudden increase of the hopping
strength at time t ¼ 0 will make the atoms propagate along
the ring. At a given final propagation time, the system
would have to be quenched back to the Mott regime and
the atomic populations on the individual sites would have
to be measured using, e.g., high-resolution imaging tech-
niques [33]. Optical disorder [34] can be used to randomly
vary the on-site energies in a controlled manner, and an
artificial gauge field [35] could be induced in order to break
TRI. The lower panel of Fig. 3 displays the numerically
computed Fock state probabilities on such a ring for the

initial state nðiÞ ¼ ð1; 1; 2; 2; 1; 0Þ [36]. It clearly displays
the CBS enhancement despite the fact that this initial state
is far from semiclassical (N=L≃ 1).
Our results represent a further step in the active field of

thermalization in closed many-body systems [29,37–40].
Indeed, Eq. (14) shows that in equilibrium, even in the
semiclassical limit and when the classical system displays
full ergodicity, many-body quantum interference generi-
cally inhibits quantum ergodicity in equilibrium, i.e.,

P̄ðnðfÞ;nðiÞ; t ≫ teqÞ ≠ 1=N acc; (15)

whereN acc ≡N accðnðiÞÞ is the number of final Fock states
that are energetically accessible to nðiÞ. This, however, is
not in conflict with signatures of many-body thermalization
at the level of single-particle observables, like the equili-
bration towards uniform occupation numbers [40], as can
be easily seen by calculating the averaged values n̄αðtÞ,
which gives the expected uniform behavior

n̄αðt;nðiÞÞ ¼ ðN=LÞ þ Oð1=N accÞ (16)

in the regime of classical ergodicity. Clearly, Eq. (14) has a
tiny effect on such single-particle observables and it is
expected that a truncated Wigner approach reproduces
them very well. Genuine many-body observables, on the
contrary, are very sensitive to many-body interference.
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FIG. 2 (color online). Average quantum (black diamonds) and
classical (red crosses) evolution probabilities in Fock space for
a Bose-Hubbard chain (L ¼ 5, N ¼ 14), at different evolution
times t=τ ¼ 1.5ðaÞ, 2.5ðbÞ, 5ðcÞ, 10ðdÞ, 20ðeÞ, 50ðfÞ with
τ≡ ℏ=J. The average was performed over an ensemble of 103

realizations of on-site energies ϵα ∈ ½0; 10J�, with interaction
strength U ¼ 4J. The probabilities are displayed for the set of
Fock states nð fÞ having the same total interaction energy as
nðiÞ ¼ ð3; 2; 3; 2; 4Þ (marked by the vertical dashed line). While
quantum-classical correspondence holds for t ∼ τ, quantum
interference sets in and stabilizes for t≳ 4τ (see the Supplemental
Material [20]) yielding, in accordance with Eq. (14), a systematic
enhancement of the quantum backscattering probability to
nðfÞ ¼ nðiÞ by about a factor 2 as compared to other final states
nðfÞ ≠ nðiÞ and to its classical prediction.
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FIG. 3 (color online). Evolution probability P̄ðnðfÞ;nðiÞ; tÞ in
Fock space averaged over random on-site energies ϵα ∈ ½0;W� for
a Bose-Hubbard ring of L ¼ 6 sites (see inset). We show results
for evolution times t ¼ 10τ, hopping phases ϕ ¼ 0, π=8, π=4,
π=2 (black diamonds, red upper triangles, green lower triangles,
blue squares), and initial states nðiÞ indicated by a vertical line.
In (a) we haveN ¼ 17 particles, with interaction strengthU ¼ 4J
andW ¼ 10J. The lower (more “quantum”) panel (b) has N ¼ 7,
U ¼ J, and W ¼ 2J. In both cases, the breaking of time-reversal
invariance for ϕ ¼ π=8, π=4 destroys the coherent enhancement
of the backscattering probability to the initial state. In the
semiclassical regime (a) the evolution probabilities globally
agree with the classical prediction for ϕ ¼ 0 (red crosses), while
they significantly exceed the latter in the quantum regime (b).
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A timely example is the inverse participation ratio

Q ¼
P

n

P
i jhEijnij4 ¼

P
n P̄ðn;n; tÞ for large t, which

is a measure of many-body localization quantifying the
uniformity of Fock states in the eigenbasis jEii of Ĥ. For
TRI, a classical calculation significantly underestimates
this degree of many-body localization: Q ¼ 2Qcl.
To summarize, we presented a semiclassical approach in

thevanVleck—Gutzwiller spirit, using sumsover interfering
paths that solve a classical mean field equation, which succ-
essfully captures genuine quantum interference in interacting
bosonic systems beyond the transient regime of quantum-
classical correspondence. We used this approach to predict
a clear-cut quantum (and genuinely many-body) effect,
namely the coherent enhancement of the return probability
in Fock space. Our predictions are fully confirmed by
extensive simulations of Bose-Hubbard models with differ-
ent topologies, even in the deep quantum regime where
experimental observation using ultracold atoms is possible.
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