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Separability criteria are typically of the necessary, but not sufficient, variety, in that satisfying
some separability criterion, such as positivity of eigenvalues under partial transpose, does not strictly
imply separability. Certifying separability amounts to proving the existence of a decomposition of a target
mixed state into some convex combination of separable states; determining the existence of such a
decomposition is “hard.” We show that it is effective to ask, instead, if the target mixed state “fits” some
preconstructed separable form, in that one can generate a sufficient separability criterion relevant to all
target states in some family by ensuring enough degrees of freedom in the preconstructed separable form.
We demonstrate this technique by inducing a sufficient criterion for “diagonally symmetric” states of N
qubits. A sufficient separability criterion opens the door to study precisely how entanglement is (not)
formed; we use ours to prove that, counterintuitively, entanglement is not generated in idealized Dicke
model superradiance despite its exemplification of many-body effects. We introduce a quantification of the
extent to which a given preconstructed parametrization comprises the set of all separable states; for
“diagonally symmetric” states our preconstruction is shown to be fully complete. This implies that our
criterion is necessary in addition to sufficient, among other ramifications which we explore.
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Despite extensive interest in many-body entanglement
[1–4], the long-standing question of how, exactly, entan-
glement is generated at all remains open. To establish the
minimal requisite common features of entanglement gen-
eration, we must seek counter-intuitive instances to chal-
lenge our preconceptions. To that end, this Letter was
motivated by initial indications which—inconclusively—
suggested that entanglement may not be a feature of Dicke
model superradiance. Superradiance is a coherent radiative
phenomenon resulting from collective and cooperative
atomic effects [5–8], and thus, it possesses the typical
hallmark of an entangling process; see, for example [9].
Various necessary criteria for separability [10–12], never-
theless, failed to find signatures of entanglement. The
extraordinary claim “superradiance occurs without entan-
glement,” demands the highest standard of evidence; to
prove that superradiance need not be entangling, we must
certify its separability by employing some sufficient
separability criterion.
For pure states, various methods can be employed to

quantify entanglement [2–4]. Mixed states, however, lack a
general solution [13,14]. Inspired in part by the generali-
zation of Glauber-Sudarshan P invoked in Eq. (28) of
Ref. [13], we derived a separable decomposition applicable
to superradiating systems. Whereas Ref. [13] is an exist-
ence proof, our decomposition explicitly solves a sepa-
rability ansatz. Indeed, the bulk of our Letter effort was
dedicated to identifying this sufficient separability cri-
terion. Rewardingly, we subsequently realized that the
technique we developed is applicable to far more than just

superradiating systems; our approach for certifying sepa-
rability is remarkably efficient throughout a broad class of
states.
Our procedure amounts to explicitly parametrizing both

the general family of states of interest, as well as some set
of preconstructed separable states. Testing if the general-
family parameters can be mapped to the separable-set
parameters (“Does it fit?”) is, therefore, a sufficient
determination of separability. We demonstrate this method
in detail on the “general diagonal symmetric” states, within
which Dicke model superradiance evolves, and we suc-
cessfully certify the perpetual separability of that model.
This scenario is further exemplary in that our parametriza-
tion of separable states surprisingly appears to encompass
all separable diagonally symmetric states; thus, the sepa-
rability criterion developed in this Letter is apparently not
only sufficient, but also necessary.
We define the general diagonal symmetric (GDS) mixed

states as those which are diagonal in the symmetric
eigenbasis of N-partite 2-level Dicke states. Each Dicke-
basis pure state is a superposition of equal-energy states; it
is the normalized sum over all permutations of a (separable)
computational-basis state. Using bold font to indicate sets,
such as n ¼ fn0; n1g, we have

jDni ¼ wn

X
perms:

fj0i; j1ig

j0…0|ffl{zffl}
n0

; 1…1|ffl{zffl}
n1

i; (1)

where n0 þ n1 ¼ N and wn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0!n1!=N!

p
.
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So, for example,

jD3;1i ¼
j0001i þ j0010i þ j0100i þ j1000iffiffiffi

4
p : (2)

The state jDni is entangled for all 0 < n0 < N; Dicke states
are natural generalizations of the W state [15], and can also
be described as the simultaneous eigenstates of total spin
and spin-z operators with J ¼ N=2 and M ¼ ðn1 − n0Þ=2.
The most general mixed state which is diagonal in this

basis can be parametrized as

ρGDS ¼
X
n

χnjDnihDnj; (3)

where the χn represent the eigenvalues in the eigendecom-
position of ρGDS, which, in the convention of quantum
optics, we refer to as the populations of ρGDS.
Next, we preconstruct a set of separable states to serve

as targets for our decomposition. We start with a com-
pletely generic single qubit pure state jψi ¼ ffiffiffi

y
p j0iþffiffiffiffiffiffiffiffiffiffiffi

1 − y
p

eiϕj1i, defined as ρ1½y;ϕ�≡ jψihψ j in operator
form, where we take an N-fold tensor product of the single
qubit state with itself, and mix uniformly over all phases,
but discretely over arbitrary amplitudes yj with weights xj,

ρSDS ≡
Z

2π

0

ð2πÞ−1
Xjmax

j¼1

xjðρ1½yj;ϕ�Þ⊗Ndϕ: (4)

We call such parametrized states separable diagonally
symmetric (SDS) states, and the value of jmax depends
on N. Note that, by definition, all the variables xj, yj
appearing in Eq. (4) must be real numbers between 0 and 1.
Note, also, that our mixing protocol differs markedly from
the spherical harmonics basis suggested in Ref. [13], and
furthermore, the SDS states cannot be resolved by the
partial-separability method of Ref. [16], as that protocol is
incompatible with continuous mixtures.
As proven in the Supplemental Material [36], Eq. (4) can

be expressed equivalently as

ρSDS ¼ N!
X
n

Xjmax

j¼1

xjyjn0ð1 − yjÞn1
n0!n1!

jDnihDnj; (5)

which more clearly parallels the form of Eq. (3).
Orthogonality of the Dicke states allows us to match up
terms inside the sums of Eq. (3) and Eq. (5), implyingN þ 1
polynomial equations [17]which define a decomposition the
populations χ of ρGDS into the parameters x, y of a ρSDS.
Explicitly, if we can successfully identify a mapping

∀nχn ¼ N!
Xjmax

j¼1

xjyjn0ð1 − yjÞn1
n0!n1!

; (6)

then, we will have demonstrated that our particular ρGDS
exists in the subspace defined by all possible ρSDS,
ρGDS ∈ ϱSDS, and, thus, that ρGDS is necessarily separable.
jmax is chosen in order for the system of equations (6) to

be well behaved, i.e., that there should be exactly N þ 1
variables x, y appearing in the N þ 1 equations.
Considering that xj and yj always come in pairs, then
plainly when N þ 1 is even we should set jmax ¼ ðN þ 1Þ=
2. When N þ 1 is odd the situation requires a manual
adjustment; we take jmax ¼ ⌈ðN þ 1Þ=2⌉ and fix the
extraneous variable by forcing yðNþ2Þ=2 ¼ 0 [18]. To
demonstrate, here is the system of polynomial equations
for N ¼ 4 qubits,

χ4;0 ¼ x1ðy1Þ4 þ x2ðy2Þ4;
χ3;1 ¼ 4ðx1ðy1Þ3ð1 − y1Þ þ x2ðy2Þ3ð1 − y2ÞÞ;
χ2;2 ¼ 6ðx1ðy1Þ2ð1 − y1Þ2 þ x2ðy2Þ2ð1 − y2Þ2Þ;
χ1;3 ¼ 4ðx1ðy1Þð1 − y1Þ3 þ x2ðy2Þð1 − y2Þ3Þ;
χ0;4 ¼ x1ð1 − y1Þ4 þ x2ð1 − y2Þ4 þ x3: (7)

Importantly, although the system of equations mapping
χ⇔x; y can always be solved, the decomposition is valid
only if it passes a “sanity check” [19]. Explicitly, this
decomposition certifies that ρGDS is separable if and only if
convexity conditions on the coefficients parametrizing ρSDS
are satisfied [20],

ρGDS ∈ ϱSDS iff ∃ x; y satisfying Eq:ð6Þ
such that ∀j∶ 0 ≤ xj; yj ≤ 1 . (8)

To be clear, conditions (8) are cumulatively a sufficient
criterion for certifying separability, since

ϱSDS ⊆ ϱSEP∩GDS ⊂ ϱGDS

where ϱSEP∩GDS ≡ ϱSEP ∩ ϱGDS; (9)

and where⊆ and ⊂ are analogous to ≤ and <, respectively;
⊂ indicates a proper subset, categorically rejecting the
possibility of equivalence. So, even though we have not yet
ruled out the existence of a separable ρGDS incompatible
with the SDS format, the criterion developed is already a
sufficient one.
The ability to certify full separability is highly desired,

as: (1) The necessary separability criterion of positivity
under all partial transpositions [10,11] does not imply
biseparability along all bipartitions [21,22]. (2) A state can
be partially separable, e.g., separable along all bipartitions,
but still be entangled [23], even to the extent of serving as a
resource for Bell inequality violations [24].
We emphasize that this method of generating sufficient

(full) separability criteria is generic and adaptable: devel-
oping criteria for different states means parametrizing some
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separable states of similar form, so as to allow for parameter
matching.
To demonstrate the utility of possessing a sufficient

separability criterion we assess the candidacy of super-
radiance for entanglement generation, per the original
motivation for this Letter. A system initially in a pure
Dicke state is said to evolve according to idealized pure
Dicke model superradiance [5] if it decays to the ground
state according to the first-order differential equations

∂χn0;n1 ½τ�
∂τ ¼−ðn0þ 1Þn1χn0;n1 ½τ� þn0ðn1þ 1Þχn0−1;n1þ1½τ�;

(10)

where τ is a dimensionless time parameter, τ ¼ Γt [25].
The idealization is that of perfect indistinguishability
of the particles; experimentally, it corresponds to the small-
volume limit without dipole-dipole induced dephasing. Our
question is whether such idealized superradiance can
generate entanglement.
Intuitively, this indistinguishable-particles idealization

should yield the strongest entanglement possible, such that
if less-idealized superradiance were to generate entangle-
ment, then presumably, entanglement would also be evi-
dent in this extremal model; see for example the discussion
of volume-dependent many-body effects in Refs. [6,26].
To consider entanglement generation, we utilize an unen-
tangled initial state; the only nonground, separable, pure,
Dicke state, is the maximally excited state [27]; i.e., we use
initial conditions

χn½τ → 0� ¼
�
1 n1 ¼ N; n0 ¼ 0

0 n1 < N; n0 > 0
: (11)

Solving the differential equations yields populations χ as
functions of τ; one may then test the system for separability
at any time τ. Consider the Peres-Horodecki criterion
[10,11], which notes that genuinely separable states remain
positive semidefinite under partial transpositions (PPT).
The property of PPT is necessary but insufficient for
separability [21–24], although for symmetric states it is
sufficient for N ¼ 2, 3, but still insufficient for N ≥ 4
[28–30]. We find that the PPT criterion is satisfied for all
τ > 0 for all N ≤ 10 [31]. This consistency with separabil-
ity per the PPT criterion underscores the need for an
unambiguous, i.e., sufficient, criterion, a challenge which
conditions (8) rise to fulfill.
To certify separability, one merely inspects the

decomposition parameters f~x; ~yg obtained by substituting
the solved-for populations χn½τ� into the system of poly-
nomial equations given by Eq. (6). Certification amounts to
verification that f~x; ~yg satisfy conditions (8). Indeed, we
numerically verified that for pure Dicke model super-
radiance, conditions (8) are satisfied for all τ > 0, thereby
certifying full separability throughout the time evolution,

for N ≤ 8. This is demonstrated graphically in the
Supplemental Material [36] for both N ¼ 4 and N ¼ 8.
We now conjecture that whenever a state ρGDS is

entangled, conditions (8) must be violated, making con-
ditions (8) a necessary and sufficient separability criterion.
The sufficiency is by construction, the necessity we can
demonstrate by comparison to a known necessary criterion,
namely PPT [10,11]. We evidence that, upon restricting to
GDS states, the PPT criterion coincides with conditions (8).
We claim

Lemma∶ ϱSDS ¼ ϱSEP∩GDS ¼ ϱPPT∩GDS; (12)

where we prove Lemma (12) for N ¼ 4 and conjecture that
it continues to hold for all N [32]. Demonstrating Lemma
(12) may seem rather daunting; proving equivalence
between separability criteria with formal logic is, indeed,
an intimidating task. However, we can skip the logical
proof and, instead, use integration to directly establish that
volume of both ϱSDS and ϱPPT∩GDS are identical. To do so,
we establish a metric on the spaces of density matrices, the
metric can be arbitrary but must be consistent: we choose
the populations of ρGDS as our integration coordinates
[33,34]. Thus,

PPTGDSVolN¼4 ¼
Z

1

0

Z
1

0

Z
1

0

Z
1

0

Z
1

0

1PPTðχ Þδð1−jχ j1Þ dχ ;

(13)

where jχ j1 ¼
P

nχn and

1PPTðχ Þ ¼
�
1 χ ∈ ϱPPT
0 χ ∈ ϱPPT

is an indicator function which cuts off the integration
whenever the populations violate the PPT conditions.
Here, the PPT conditions mean that all eigenvalues are
nonnegative for all bipartitions of the qubits for partial trans-
position [35]. We find numerically that PPTGDSVolN¼4 ¼
ð3808� 2Þ × 10−6. In contrast, the volume of all GDS
states, including entangled, follows from Eq. (13) absent the
indicator function; GDSVolN ¼ 1=N!. For four qubits
GDSVolN¼4 ¼ 41 666.6̄ × 10−6.
In principle, one could calculate the volume of ϱSDS

along the same lines as Eq. (13) with a different indicator
function based on conditions (8), but there is a much easier
way to do it: perform the integration for SDSVol using
x and y as the integration coordinates, thus, eliminating
the need for any indicator function whatsoever. To stay
consistent with the originally established metric of the
populations χ , we must insert a volume element in the
integrand, namely the absolute value of the determinant of
Jacobian matrix for the change of variable. ForN ¼ 4, there
are five χn expressible in terms of x, y via Eq. (6), which
correspond to the columns of the Jacobian matrix. The five
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rows of the Jacobian matrix are given by taking the
derivative of the χ list with respect to each of x1, x2, x3,
y1, y2. The Jacobian’s determinant, happily a priori non-
negative, is jac ¼ 96x1x2ð1 − y1Þ2ð1 − y2Þ2ðy1 − y2Þ4.
Last, we must ensure a one-to-one mapping between χ
and x, y. To avoid the problematic interchangeability
between the variable pairs x1, y1 and x2, y2 we impose
the ordering x1 ≥ x2.
Therefore,

SDSVolN¼4 ¼
Z

1

0

Z
1

0

Z
1

0

Z
1

0

Z
1

0

1x1≥x2

× jac × δð1−jxj1Þ dxdy;

where jxj1 ¼
P

3
k¼1 xk, and unlike the x, the y variables

have no further restrictions placed upon them due to the
normalization of ρSDS. We find that SDSVolN¼4 ¼
2=525 ≈ ð3809.5Þ × 10−6. Because we must have
ϱSDS ⊆ ϱPPT∩GDS, we are forced to revise
PPTGDSVolN¼4 to the upper limit of its uncertainty, which
indicates convincingly that Lemma (12) is true for N ¼ 4.
The authors suspect that Lemma (12) is true for all N for

reasons as follows: As previously mentioned, we found that
Dicke model superradiance time evolution, per Eq. (10), is
PPT for any τ ≥ 0 for at least N ≤ 10. Thus, superradiance
serves as a sort of representative sample of PPT ∩ GDS
states, or formally ϱSUP-RAD ⊂ ϱPPT∩GDS. But also, as
mentioned earlier, we found that such systems apparently
always fit the SDS form, in that they satisfy conditions (8)
for any τ ≥ 0 for at least N ≤ 8. If Lemma (12) were false,
then the unflappable fitting of superradiant states into the
SDS form would be surprising, as we would have expected
ϱSUP�RAD⊂ϱSDS. Thus, we have accumulated evidence by
contraposition to support Lemma (12) for N > 4.
If Lemma (12) is true for all N, as evidence suggests,

then the ramifications are numerous. First, it implies that
conditions (8) amount to a necessary and sufficient criterion
for separability. Second, it implies that the basic PPT
criterion is a sufficient separability test for diagonally
symmetric states. Third, we can generate novel practical
necessary (but not sufficient) separability criteria by simply
considering weaker extensions of conditions (8). For
example, presuming that all separable diagonally symmet-
ric states fit the form of Eq. (6) allows us to identify
”separable maxima” for the populations such that if even a
single population exceeds its “maximum separable value,”
then entanglement is incontrovertible. We find that, for
ρGDS to be separable, it is necessary (but not sufficient) to
satisfy this weaker form of Eq. (6) expressed as

∀nχn0;n1 ≤
�
n0!n1!
N!

�
−1
max0<y<1½yn0ð1 − yÞn1 �

∴ χn0;n1 ≤
�
n0n0

n0!

��
n1n1

n1!

��
N!

NN

�
; (14)

which is computationally optimal as a first-pass test to
detect entanglement.
The symmetric basis of Dicke states can be extended to

general qudits. We desire a generalization of Eq. (6) for
qudits, and we wonder if said generalization would also be
necessary in addition to sufficient, à la Lemma (12). We
hope to consider this in a future work.
In conclusion, what was originally an analysis of super-

radiance has led to a broad approach for studying multi-
partite entanglement. We found that a guess and check
technique can be surprisingly efficient, as evidenced by the
derivation of conditions (8) which apply for all states
diagonal in the symmetric basis. Moreover, the derived
criterion is a completely tight characterization of separabil-
ity properties, since we found that it maps out a volume of
states no smaller than that defined by the PPT criterion.
Additionally, our motivating question has been firmly
answered in the negative; pure Dicke model superradiance
cannot generate entanglement, begging the question ”What
is, then, the essential prerequisite of entanglement?”
We hope that our techniques for generating sufficient
separability criteria, and for certifying the sufficiency of
known necessary separability criteria, may prove useful in
furthering the understanding of entanglement.
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