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We report on an experimental test of classical and quantum dimension. We have used a dimension
witness that can distinguish between quantum and classical systems of dimensions two, three, and four and
performed the experiment for all five cases. The witness we have chosen is a base of semi-device-
independent cryptographic and randomness expansion protocols. Therefore, the part of the experiment in
which qubits were used is a realization of these protocols. In our work we also present an analytic method
for finding the maximum quantum value of the witness along with corresponding measurements and
preparations. This method is quite general and can be applied to any linear dimension witness.
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Classical and quantum dimensions are fundamental
quantities in information processing. In particular, security
of many cryptographic schemes [1–3] crucially relies on
the dimensional characteristics of the information carriers.
The concept of a quantum dimension witness was first
introduced for the dimension of the Hilbert space of
composite systems tested locally [4]. Later, a device-
independent dimension witness was introduced in [5]
and the robustness of such witnesses was analyzed in
[6]. More recently the device-independent dimension wit-
nesses were realized experimentally [7,8].
Apart from testing the dimension of a system, the

witnesses can also have a more practical application: semi-
device-independent protocols. In these scenarios we do not
make any assumptions about the devices that the parties
involved are using, but we do assume an upper bound on
the dimension of the systems communicated. This setting
provides a good compromise between fully device-
independent protocols and ones with complete knowledge
of the devices because it makes implementation much
easier than in the first case and provides better security than
in the second. The notion of semi-device independence was
introduced in [2] in the context of cryptography and was
later developed for randomness expansion in [3,9,10] and
for quantum state discrimination in [11]. These applications
require witnesses based on quantum random access codes
[12,13]. The witnesses realized in [7,8] do not have this
property.
In this work we analytically study and then experimen-

tally realize a dimension witness inspired by the Clauser-
Horne-Shimony-Holt (CHSH) inequality [14]. First we
derive the bounds for the classical and quantum systems
of dimensions two, three, and four (the witness is saturated
by a four-level system and cannot make distinction for
higher dimensions). Later we describe the experimental
setup and present the results. Finally, we remark on how

the test for quantum dimension two, which we have
conducted, would perform as a realization of a semi-
device-independent Quantum Key Distribution or random-
ness expansion protocol.
The scenario that we consider is schematically illustrated

in Fig. 1. There is a state preparer with N buttons; it emits a
particle in a state ρx (specified by the device’s supplier)
when button x ∈ f1;…; Ng is pressed. For testing, the
emitted particles are sent to a measurement device, with m
buttons. When button y ∈ f1;…; mg is pressed, the device
performs measurement My on the incoming particle. The
measurement produces outcome b ∈ f−1;þ1g. A com-
plete test should yield probability distributions Pðbjx; yÞ
for obtaining result b in measurement My on state ρx.
Suitable combinations of the experimental probabilities
Pðbjx; yÞ can then be compared with the theoretical
classical and quantum bounds of the dimension witness.
Dimension of a system is defined as the number of

distinguishable states. In classical information theory the
states of a system are values of bits or trits and are all
perfectly distinguishable. Therefore, the classical dimen-
sion of a bit is dc ¼ 2, of a trit, dc ¼ 3, and of a pair of bits,
dc ¼ 4. In the quantum case the dimension dq is simply the
dimension of the Hilbert space. For our tests of the lower
bounds for dc and dq, we utilize the dimension witnesses of
the type introduced in [5]. These witnesses use as primary
quantities the expectation values

Exy ¼ Pðþ1jx; yÞ − Pð−1jx; yÞ. (1)

In our test we use a CHSH-inspired combination of these
expectation values, which we denote DCHSH. We call it
CHSH inspired because it can be obtained from the CHSH
inequality using the method described in [10]. It involves
four states (N ¼ 4) and uses two dichotomic measure-
ments (m ¼ 2),
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DCHSH ≡ ðE11 þ E12Þ − ðE21 þ E22Þ
þ ðE31 − E32Þ − ðE41 − E42Þ ≤ λd: (2)

The upper bound λd further on will be denoted as Cd
and Qd for classical and quantum cases, respectively. The
subscript d denotes the dimension. Classical ensembles
allow for statistical mixtures of identical or fully distin-
guishable states only. Quantum ensembles permit pure
states, which are neither identical nor orthogonal to each
other. Since classical ensembles are more restricted than
quantum, one immediately notices that Cd ≤ Qd.
To find the classical bounds Cd, notice that, due to the

linearity of DCHSH, only deterministic strategies need to be
considered. The preparer sends deterministic messages,
but is constrained by the dimension of the system. Thus,
a classical dc dimensional system can be linked with dc
different two bitmessages, each bit determining the system’s
behavior for a given setting y of the receiver. Each such
message can be put in the form of a two-dimensional vector
v⃗x, with components v⃗xy ¼ �1 giving the output of the
receiver, for the given message/preparation x. The classical
deterministic value of (2) is

DCHSH ¼ v⃗1 · ð1; 1Þ þ v⃗2 · ð−1;−1Þ
þv⃗3 · ð1;−1Þ þ v⃗4 · ð−1; 1Þ: (3)

If a vector v⃗x is equal to the vector that enters the given
scalar product with it, their product is 2. If they differ in
one component, this product is 0. If they differ in two, the
product is −2. Thus, if all four v⃗x are different, and each is
equal to the vector by which it is scalarly multiplied in (3),
the value of DCHSH can reach 8. Thus, dc ¼ 4 implies
C4 ¼ 8. If there are only three different values of v⃗x, then
at most three of the terms in (3) can be 2. Thus, C3 ¼ 6.
For dc ¼ 2 we have C2 ¼ 4.

For the quantum bounds, the relevant measuring oper-
ators for d ¼ 2 and d ¼ 3 must obey the following:
Lemma 1. To find the maximal quantum value of any

linear dimensionwitness, based onbinaryoutcomes, given by

WD ¼
XN
x¼1

Xm
y¼1

X
s¼�1

Kðx;y;sÞPðsjx; yÞ; (4)

where Kðx;y;sÞ are some real coefficients, it is sufficient to
consider only pure states and projective measurements.
Proof. Since any mixed state is as a convex combina-

tion (probabilistic mixture) of pure ones, the value of the
part of a dimension witness corresponding to such a state is
equal to a probabilistic average of the values for the pure
states. Therefore, it cannot be greater than the largest value
entering this sum. Thus, the maximal value is achieved for
pure states. We only need to prove that projective mea-
surements are sufficient. The most general form of meas-
urement is a positive operator value measurement (POVM).
If there are only two outcomes, a POVM measurement
consists of a pair of positive operators that sum up to
identity. We denote them Oy

þ and Oy− ¼ 1 −Oy
þ.

Obviously, Oy
þ and Oy− commute. Thus, they can be

simultaneously diagonalized. Therefore, we can write them
as Oy− ¼ P

d
j¼1 c

y
j jjihjj and Oy

þ ¼ P
d
j¼1ð1 − cyjÞjjihjj,

where jji’s form the diagonalizing basis (d is the dimension
of the system). Obviously, 0 ≤ ci ≤ 1. The probability of
obtaining outcome s ¼ �1 when measuring a system in
pure state ψx is Pðsjx; yÞ ¼ hψxjOy

s jψxi, where jψxi is the
quantum state sent by the preparer.
The dimension witness is a sum of terms corresponding

to different measurements. Such terms corresponding to a
specific measurement setting y are given by

X
x

Kðx; y;þ1ÞhψxjOy
þjψxi

þ
X
x

Kðx; y;−1ÞhψxjOy−jψxi ¼ k0 þ
X
j

cjkj: (5)

The coefficients k0 and kj can be easily calculated, but
their actual values are irrelevant. What is relevant is the fact
that the final formula is linear in ci’s. The maximal value of
this expression is reached when cj’s reach their boundary
values, i.e., are equal to 1 or 0. In all such cases, Oy

� are
projectors. Q.E.D.
Projective dichotomic measurements for any dimension

of eigenvalues �1 are represented by operators of the form

Mi ¼ 1–2jmiihmij; (6)

where 1 denotes the identity matrix. In both cases of
dimensions two and three, and just two dichotomic
operators (i ¼ 1, 2), one can always find such a specific
basis in which the states linked with eigenvalues −1 can be
put as

FIG. 1 (color online). Device-independent scenario for testing
the minimum classical or quantum dimension. When button x ∈
f1;…; Ng is pressed, a state preparer part of the setup, with N
buttons, emits a particle in a state ρx. This particle is sent to a
measurement device withm buttons. When button y ∈ f1;…; mg
is pressed, the device performs measurement My on the particle.
The measurement produces outcomes b ∈ f−1;þ1g.
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jm1;2i ¼ cos

�
θ

2

�
j1i ∓ sin

�
θ

2

�
j2i. (7)

In the case of qutrits, this is so because jmii span a two-
dimensional subspace, and one can define the basis state j0i
as being orthogonal to it. Moreover, the expectation value
of DCHSH can be written as

hψ1jðM1 þM2Þjψ1i − hψ2jðM1 þM2Þjψ2i
þ hψ3jðM1 −M2Þjψ3i − hψ4jðM1 −M2Þjψ4i: (8)

The optimization can thus be reduced to finding the
maximum of the sum of the differences between the
maximum and minimum eigenvalues of M1 þM2 and
M1 −M2 with

M1 þM2 ¼ 2½1 − ð1þ cos θÞj1ih1j − ð1 − cos θÞj2ih2j�
(9)

and

M1 −M2 ¼ 4 cos

�
θ

2

�
sin

�
θ

2

�
½j1ih2j þ j2ih1j�: (10)

For d ¼ 2, the Hilbert space is spanned by vectors j1i
and j2i. This gives

M1 þM2 ¼ 2 cosðθÞ½j2ih2j − j1ih1j� (11)

and

M1 −M2 ¼ 2 sinðθÞ½j1ih2j þ j2ih1j�; (12)

and without loss of generality one can choose cosðθÞ ≥ 0
and sinðθÞ ≥ 0. This fixes the optimal states to

jψ1i ¼ j2i; (13a)

jψ2i ¼ j1i; (13b)

jψ3i ¼
1ffiffiffi
2

p ðj1i þ j2iÞ; (13c)

jψ4i ¼
1ffiffiffi
2

p ðj1i − j2iÞ; (13d)

and reduces the optimization to finding the maxi-
mum value of 4ðcosðθÞ þ sinðθÞÞ ≤ 4

ffiffiffi
2

p
. The bound is

achieved for θ ¼ π=4. Thus the qubit bound for DCHSH
is Q2 ¼ 4

ffiffiffi
2

p
∼ 5.66.

For d ¼ 3, the Hilbert space is spanned by vectors j0i
and j1i and j2i, and the sum M1 þM2 is

M1 þM2 ¼ 2½j0ih0j þ cosðθÞðj2ih2j − j1ih1jÞ�: (14)

Thus the optimal jψ1i becomes j0i. Determination of the
bound of DCHSH for qutrits is thus reduced to the

maximization of ð2þ2cosθþ4sinθÞ≤ 2ð1þ ffiffiffi
5

p Þ, which
is achieved for tanðθÞ ¼ 2. Thus the qutrit bound forDCHSH

is Q3 ¼ 2ð1þ ffiffiffi
5

p Þ ∼ 6.47.
Note that due to our lemma, if a qubit enters our device,

for example, then measurements of degenerate dichotomic
observables of dimension larger than two constitute POVM
measurements on a qubit (by Naimark theorem). Thus,
in such a case the qubit limit in the inequality cannot be
violated.
In general, the dimension testing protocol could be put as

follows. A state preparer claims that his/her systems are of
certain classical or quantum dimension, and the emitted
systems are tested with observables selected in such a way
that they are compatible with the claim. If, for example,
the claim is that the system is qutrit, and the bound for
qubits is violated, then the system is of a higher dimension
than two. If the value is close to the bound for qutrits, we
can safely conclude that the system has such a dimension
as declared, and imperfections do not allow perfect satu-
ration of the bound. Of course the system may be of even
higher dimensionality, and in a more noisy state. Thus we
effectively test the minimal dimension of the system
provided by the preparer.
Let us now move to our experimental realization of the

dimension indicator.
The preparer uses a preparation device (see the prepa-

ration device frame in Fig. 2), which encodes the informa-
tion in four basis states: j1i≡ jV; ai, j2i≡ jH; ai,
j3i≡ jV; bi, and j0i≡ jH; bi, where (H) and (V) are
horizontal and vertical polarization photonic modes,
respectively, and (a and b) are two spatial photonic modes.
Any qutrit state can be written as αjH; ai þ βjV; aiþ
γjH; bi, and any qubit state can be represented by
αjH; ai þ βjV; ai. The photonic states were prepared by

Preparation device

Photon
Source

Measurement device

FIG. 2 (color online). Experimental setup for a witness testing
classical and quantum dimensions.The state preparer is a single
photon source emitting horizontally polarized photons that, after
passing through three half-wave plates (HWP) suitably oriented
at angles θi (with i ¼ 1, 2, 3), are prepared in the required states.
Information is encoded in horizontal and vertical polarizations,
and in two spatial modes. The probabilities needed for the
dimension witnesses DCHSH are obtained from the number of
detections in the detectors Di, after properly adjusting the
orientation φ of the half-wave plate on the measurement side
of the setup.
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three suitably oriented half-wave plates HWPðθ1Þ,
HWPðθ2Þ, and HWPðθ3Þ, such that

jψi ¼ sin ð2θ1Þ sinð2θ3ÞjH; ai − sin ð2θ1Þ cos ð2θ3ÞjV; ai
þ cos ð2θ1Þ cos ð2θ2ÞjH; bi
þ cos ð2θ1Þ sin ð2θ2ÞjV; bi: (15)

Thus, by adjusting the orientation angles θi of the HWP
(θi), we can produce any of the required states. In the
experiment, classical sets (bits, trits, quarts) consisted of
states that were perfectly distinguishable or identical.
The tester can use a different operational approach but

with a single measurement device, depending on the claim
of the preparer, and test whether the bounds are violated.
To implement Mi, the HWP is set in such a way that the
eigenstate jmii, which corresponds to the −1 eigenvalue,
can give a click only in detector D1.
The internal functioning of the measurement device is

as follows: it consists of one adjustable HWPðφÞ and one
polarization beam splitter (PBS). If the input state is the
eigenstate with negative eigenvalue, the polarization in
mode a will first be rotated by HWPðφÞ to obtain the state
β0jV; ai. When the PBS splits the polarization modes of
the two spatial modes, this will give a click in detector D1.
All the tests are exactly the same, up to a half-wave plate
rotation. To test the qubit,M1 andM2 correspond to setting
the half-wave plate to an angle φ ¼ 11.25° and φ ¼ 78.75°,
respectively. To test the qutrit, M1 and M2 correspond to
setting the half-wave plate to an angle φ ¼ 15.86° and
φ ¼ 74.14°, respectively.
For qubit states, Pðþ1jx; yÞ and Pð−1jx; yÞ were esti-

mated from the number of detections in D2 and D1,
respectively. For qutrit states, the values of Pðþ1jx; yÞ
and Pð−1jx; yÞ were obtained from the number of detec-
tions in D2 and D3, and in D1, respectively. When the
preparer claimed classical sets, the measurement settings of
the tester were reduced to arranging the detectors so that
they clicked with the negative eigenvalue upon receiving
a photon in a particular basis state: j0i → D3, j1i → D1,
j2i → D2, and j3i → D4.
Our single-photon source was weak coherent light from a

diode laser emitting at 780 nm. The laser was attenuated
so that the two-photon coincidences were negligible. Our
single-photon detectors (Di, i ¼ 1, 2, 3, 4) were silicon
avalanche photodiodes with detection efficiency ηd ¼ 0.55
and a dark counts rate Rd ≃ 400 Hz.
The detectors Di produced output transistor-transistor

logic signals of 4.1 V (with duration of 41 ns). The dead
time of the detectors was 50 ns. All single counts were
registered using multichannel coincidence logic with a time
window of 1.7 ns.
The goals of the experiments were to obtain the

maximum qubit violation of the bit bound DCHSHðbitÞ ¼
C2 ¼ 4, the maximum trit violation of the qubit bound
DCHSHðqubitÞ ¼ Q2 ¼ 5.66, and the maximum qutrit

violation of the trit bound DCHSHðtritÞ ¼ C3 ¼ 6. We
prepared four qutrit states and performed m ¼ 2 dicho-
tomic measurements which maximize DCHSH. The last
experiment was a DCHSH test on quarts, the maximum
quart violation of the qutrit bound DCHSHðqutritÞ ¼ Q3 ¼
6.47. For this we prepared four fully distinguishable quart
states the DCHSH, and the results were very close to the
algebraic bound DCHSH ¼ C4 ¼ 8.
All our experimental results are summarized in Table I.

The experimental values are in very good agreement
with the theoretical predictions. This clearly demonstrates
that we are able to determine the minimum dimension of a
supplied set of states. The errors were deduced from
propagated Poissonian counting statistics of the raw detec-
tion events, the limited precision of the settings of the
polarization components (HWP plates), and the imperfec-
tion of the polarizing beam splitters. The number of detected
single photonswas about 1.5 × 105 per second, and the ratio
of coincidences to singleswas less than 2 × 10−4. Themeas-
urement time for each experiment was 30 s. All the results
and their corresponding errors are listed in Table 1.
As we have previously stated, the witness DCHSH plays a

crucial role in semi-device-independent quantum key dis-
tribution and randomnessexpansion. In [2] it hasbeenused as
a certificate for the security of quantum key distribution. The
protocol there assumed that the communicated system was
a qubit, and this has been the only assumption made about
the devices. The value of DCHSH for qubits obtained in our
experimentwould imply a secure key rate of 5.18%or 6.67%
if we hadmade an additional assumption that the dark counts
observed are not controlled by a potential eavesdropper.
Thederivationof thesevalues is basedon results from [15,16]
given in the Supplemental Material [17].
The witnessDCHSH has been first used as a certificate for

semi-device randomness expansion in [3] and the bounds
on the amount of min-entropy generated with it have been
improved in [10]. The amount of min-entropy generated by
a round of protocol with qubits for the values observed in

TABLE I. Experimental results of the dimension witness tests.
Dth, Dexp, and Db

exp represent the theoretical, raw experimental,
and dark counts corrected experimental values of the dimension
witness bounds, respectively. ΔDp, ΔDd, and ΔDT are the errors
due to the limited precision of the settings of the polarization
components and the imperfections of the polarization splitting,
the propagated Poissonian counting statistics of the raw detection
events and the total errors, respectively.

Inequality
bound Dth Dexp Db

exp ΔDp ΔDd ΔDT

DCHSH(bit) 4 3.94 3.98 0.08 0.010 0.08
DCHSH(qubit) 5.66 5.51 5.56 0.12 0.008 0.12
DCHSH(trit) 6 5.90 5.96 0.13 0.010 0.13
DCHSH(qutrit) 6.47 6.44 6.50 0.14 0.009 0.14
DCHSH(quart) 8 7.88 7.94 0.16 0.010 0.16
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our experiment can be read from Fig. 4 in [10] (note that T2

used there is equal to 1
2
DCHSH). For DCHSH ¼ 5.51 it is

0.0595, and for DCHSH ¼ 5.56 it reaches 0.0820.
In summary, we have experimentally determined lower

bounds for the dimension of several ensembles of physical
systems in a device-independent way. For the tests we
utilized a dimension witnesses device inspired by the
structure of the CHSH inequality, which has a direct
application in semi-device-independent quantum key dis-
tribution and randomness expansion. Note that the pre-
sented single device is universal for all studied dimensions
from dc=q ¼ 2 to dc=q ¼ 4. In the witness device we used
optimal measurements for the given dimension. We applied
them to sets of photonic bits, qubits, trits, qutrits, and
quarts. Our results demonstrate that CHSH-inspired dimen-
sion witnesses can be utilized to test classical and quantum
dimensions of sets of physical states generated in externally
supplied, potentially defective devices, and that one can
distinguish between classical and quantum sets of states of
a given dimension. We also discussed the efficiency of the
semi-device-independent protocols based on our witness
using the values reached in our experiment. The approach
can be generalized to tests of systems of higher dimensions.
This can be done in several ways, some of which will be
presented in forthcoming papers.

M. P. would like to thank RyszardWeinar for discussions
and Piotr Mironowicz for supplying the raw data from [10].
J. A., P. B., andM. B. are supportedby theSwedishResearch
Council (VR), the Linnaeus Center of Excellence ADOPT.
M. P. is supported by the TEAM program of the Foundation
for Polish Science (FNP), UK EPSRC, NCN Grant
No. 2013/08/M/ST2/00626, and QUASAR (ERA-NET
CHIST-ERA 7FP UE). M. Z. is supported by an Ideas
Plus Program MNiSW (IdP2011 000361). M. B. is sup-
ported by the European Research Council, Grant QOLAPS.

[1] A. Acín, N. Gisin, and L. Masanes, Phys. Rev. Lett. 97
120405 (2006).

[2] M. Pawłowski and N. Brunner, Phys. Rev. A 84, 010302
(2011).

[3] H.-W. Li, Z.-Q. Yin, Y.-C. Wu, X.-B. Zou, S. Wang, W.
Chen, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 84, 034301
(2011).

[4] N. Brunner, S. Pironio, A. Acin, N. Gisin, A. Méthot, and
V. Scarani, Phys. Rev. Lett. 100, 210503 (2008).

[5] R. Gallego, N. Brunner, C. Hadley, and A. Acín, Phys. Rev.
Lett. 105, 230501 (2010).

[6] M. DallArno, E. Passaro, R. Gallego, and A. Acín,
Phys. Rev. A 86, 042312 (2012).

[7] J. Ahrens, P. Badziag, A. Cabello, and M. Bourennane,
Nat. Phys. 8, 592 (2012).

[8] M. Hendrych, R. Gallego, M. Micuda, N. Brunner, A. Acín,
and J. P. Torres, Nat. Phys. 8, 588 (2012).

[9] H.-W. Li, M. Pawłowski, Z.-Q. Yin, G.-C. Guo, and
Z.-F. Han, Phys. Rev. A 85, 052308 (2012).

[10] H.-W. Li, P. Mironowicz, M. Pawłowski, Z.-Q. Yin,
Y.-C. Wu, S. Wang, W. Chen, H.-G. Hu, G.-C. Guo, and
Z.-F. Han, Phys. Rev. A 87, 020302(R) (2013).

[11] N. Brunner, M. Navascues, and T. Vrtesi, Phys. Rev. Lett.
110, 150501 (2013).

[12] S. Wehner, M. Christandl, and A. C. Doherty, Phys. Rev. A
78, 062112 (2008).

[13] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani,
J. Assoc. Comput. Mach. 49, 496 (2002).

[14] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Phys. Rev. Lett. 23, 880 (1969).

[15] I. Csiszar and J. Körner, IEEE Trans. Inf. Theory 24, 339
(1978).

[16] M. Pawłowski and A. Winter, Phys. Rev. A 85, 022331
(2012).

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.112.140401 for the
derivation of the key rates given in the text.

PRL 112, 140401 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

11 APRIL 2014

140401-5

http://dx.doi.org/10.1103/PhysRevLett.97.120405
http://dx.doi.org/10.1103/PhysRevLett.97.120405
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://dx.doi.org/10.1103/PhysRevA.84.010302
http://dx.doi.org/10.1103/PhysRevA.84.034301
http://dx.doi.org/10.1103/PhysRevA.84.034301
http://dx.doi.org/10.1103/PhysRevLett.100.210503
http://dx.doi.org/10.1103/PhysRevLett.105.230501
http://dx.doi.org/10.1103/PhysRevLett.105.230501
http://dx.doi.org/10.1103/PhysRevA.86.042312
http://dx.doi.org/10.1038/nphys2333
http://dx.doi.org/10.1038/nphys2334
http://dx.doi.org/10.1103/PhysRevA.85.052308
http://dx.doi.org/10.1103/PhysRevA.87.020302
http://dx.doi.org/10.1103/PhysRevLett.110.150501
http://dx.doi.org/10.1103/PhysRevLett.110.150501
http://dx.doi.org/10.1103/PhysRevA.78.062112
http://dx.doi.org/10.1103/PhysRevA.78.062112
http://dx.doi.org/10.1145/581771.581773
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1109/TIT.1978.1055892
http://dx.doi.org/10.1109/TIT.1978.1055892
http://dx.doi.org/10.1103/PhysRevA.85.022331
http://dx.doi.org/10.1103/PhysRevA.85.022331
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.140401
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.140401

