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We propose a simple microscopic model for arching phenomena at bottlenecks. The dynamics of
particles in front of a bottleneck is described by a one-dimensional stochastic cellular automaton on a
semicircular geometry. The model reproduces oscillation phenomena due to the formation and collapsing
of arches. It predicts the existence of a critical bottleneck size for continuous particle flows. The
dependence of the jamming probability on the system size is approximated by the Gompertz function. The
analytical results are in good agreement with simulations.
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Granular materials are many-particle systems that dis-
play interesting and unintuitive physical properties [1,2].
One of their most important types of behavior is the
formation of arches which leads to a mutual arrest of their
constituent particles in front of a bottleneck. Such a
situation is usually called a “jam.” Usually it is an
undesirable state since it causes many problems, e.g., in
industrial applications. It often occurs in systems such as
traffic [3], granular flow through a hopper [4], and escaping
stampedes during evacuations [5]. Cates et al., in their
comprehensive study [6], suggest that jammed systems
should be categorized as a new class “fragile matter,” i.e.,
materials which respond to applied stress by reorganizing
their internal structures through force chains. Liu and Nagel
[7] extend the concept not only to grains, bubbles, and
droplets but also to glass transitions. One focus of recent
studies on granular flows has been on bottleneck flows with
external perturbations, e.g., vibrations. Vibrated granular
flows exhibit intermittent behavior, which reflects phase
transitions between a jamming and an unjamming state.
Several experiments have revealed properties of granular

flows through a bottleneck. The most important one is the
existence of a critical outlet size above which no arches
appear [4]. However, some empirical laws do not determine
the critical outlet size [8]. In addition, the two states of
intermittent flows alternate randomly and lifetime distri-
butions have been investigated. The avalanche size, defined
as the number of grains passing through a bottleneck during
a single unjamming state, follows an exponential distribu-
tion [8–12]. On the other hand, the duration of an
unjamming state obeys power law and its expectation value
does not converge for low magnitudes of vibration [11].
In some situations, pedestrian crowds exhibit collective

phenomena similar to those in granular materials, e.g., lane
formation as in oppositely charged colloids [13] and for
evacuation flows at bottlenecks [5,14]. The latter shows
very similar behavior to a granular flow since also in

pedestrian crowds formation and collapsing of arches has
been observed. Although granular materials require exter-
nal perturbations to resume flows, pedestrian crowds
rapidly destroy clogging by self-adjustment.
In the following, we propose a simple model that

captures the essence of the observed behavior of many-
particle systems near a bottleneck, e.g., oscillation
phenomena. Although particle flows usually are three
dimensional, we focus here on two-dimensional realiza-
tions which are relevant for pedestrian dynamics, but have
also been studied for granular materials. For simplicity, we
ignore fluctuations that occur in the bulk of granular
assemblies [10]. Instead, we focus on properties of inter-
mittent behavior which stem from arching phenomena. The
precise structure of the arches is not relevant for the
properties of the flow. This assumption allows us to
formulate the dynamics of the particles by a one-
dimensional stochastic cellular automaton. Its sites are
arranged in a semicircular shape which reflects the typical
form of arches (Fig. 1). Here we have assumed that no
arches appear in the area nearer to the bottleneck than the
semicircle, which implies that its size is of the order of the
bottleneck width. If the site size is chosen as the typical size
of the particles (grains), each site can be occupied by at
most one particle. Hence, each site j can be in two different
states, empty (sj ¼ 0) or occupied (sj ¼ 1). The configu-
ration (1;…; 1) where all sites are occupied represents arch
formation. If PðCÞ denotes the probability of finding a
configuration C ¼ ðs1;…; sLÞ in the steady state, the
arching probability is given by Parch ¼ Pð1;…; 1Þ.
In order to define the dynamics of the model we assume

that the bulk of the granular assembly acts as a particle bath
which supplies particles to the system at a constant rate α.
Then empty sites become occupied with the probability of
α which can be interpreted as the probability that a particle
finds an available gap. It is called “inflow” in the following.
The “outflow” is represented by the annihilation of a
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particle. The probability of this process depends on the
occupancy of the two neighboring sites. If both are
occupied, then the particle is annihilated with probability
γ. For the other cases the outflow probability is β. At the
boundary sites, the outflow depends only on a single
neighboring site. It occurs with a probability of δ when
the site is occupied and with β for an empty neighbor site.
In the physical regime, γ and δ are smaller than β, since
these parameters capture the effects of friction among
grains and walls. Hence γ and δ decrease as friction
becomes stronger. In each step, these update rules are
applied to a randomly chosen site (random-sequential
update), which is an approximate realization of a stochastic
process in continuous time.
A flow rate QðCÞ for a configuration C can be defined

as the probability that an outflow event occurs. In particu-
lar, the flow rate for the arching configuration
Qð1;…; 1Þ ¼ ð2δþ ðL − 2ÞγÞ=L ¼ ∶Qarch indicates the
probability that an arch breaks. Hence the lifetime
distribution of arches is given by Qarchð1 −QarchÞt−1 which
has the expectation value 1=Qarch. In our model, arches
are not stable in the sense that they have an infinite
lifetime. We therefore introduce a stability threshold N
and consider all arches with lifetimes larger than N as
“stable.” Then an arch is stable with probability
S ≔ 1 −Qarch

P
N
t¼1ð1 −QarchÞt−1 ¼ ð1 −QarchÞN . The

lifetime distribution of stable arches (t > N) is given by
Qarchð1 −QarchÞt−ðNþ1Þ, which has the expectation
value 1=Qarch þ N.
For simplicity, we restrict our attention to the cases

where α ¼ β ≠ 0 and γ ¼ δ. The first condition implies that

inflow and outflow rates are identical when no friction acts.
The second identity implies that the friction between
particles and between particles and walls are identical.
In this situation, Qarch is independent of the system size L.
We introduce a new parameter ε ¼ γ=α so that 0 ≤ ε ≤ 1 in
the physical regime. We first consider two limiting cases. In
the case ε ¼ 0, flow cannot resume once an arch has
formed. This situation corresponds to an absorbing state
where the system attains a trivial stationary state without
dynamics. Similar behavior is observed when granular
materials flow through a narrow hopper without vibration.
When ε ¼ 1, all configurations appear uniformly in the
steady state since inflow and outflow occur at the same rate.
Therefore the probability for each configuration is 1=2L.
We can interpret the parameter ε as an indicator for the
magnitude of destabilization of arches since the conditions
ε ¼ 0 and ε ¼ 1 correspond to jamming and continuous
flow, respectively. Additionally, ε accounts for arch desta-
bilization by pedestrians. Consider a situation where arches
are formed during a rush through a bottleneck. Because of
the high velocity of the pedestrians and the large friction
between them this situation is described by large values of α
and β and small values of γ and δ. As a consequence, ε is
small and can be viewed as an indicator for the pedestrian’s
discipline near the exit.
The collective behavior observed in simulations is in

good qualitative agreement with experiments on granular
materials. The dynamical behavior of the model indicates
the presence of two states: jamming and continuous flow.
Jamming is represented in the graph (Fig. 2) by horizontal
regions, where due to the existence of an arch no particles
are annihilated. The other parts show nonvanishing particle
flows. A similar intermittent behavior with random alter-
nation between two such states can be observed in granular
flows and escaping stampedes [11,14].
Let usnowfocuson the avalanche sizem. Inourmodel, the

avalanche size is defined as the number of outflowing

FIG. 1 (color online). Definition of the model. Top: A semicircle
which is slightly larger than the width of the exit is divided into
discrete sites which can contain at most one particle. Bottom:
Definition of a one-dimensional stochastic cellular automaton
characterized by four parameters α, β, γ, and δ. An arch corre-
sponds to the configuration where all sites are occupied. The arrow
into a site represents a particle inflow corresponding to particle
creation at a rate α. The arrows pointing out of sites indicate the
outflow which is defined by 3-site interactions. In the bulk it occurs
with rates β or γ and at the boundaries with rate β or δ.

FIG. 2 (color online). The dynamical behavior of the model for
α ¼ β ¼ 0.9, γ ¼ δ ¼ 0.1, L ¼ 3, and different realizations of
the stochastic dynamics. The vertical axis indicates the cumu-
lative number of outflowing (annihilated) particles.
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particles between two successive stable arches. Presuming
that avalanchesizesaredistributedexponentiallyasobserved
in experiments, we are interested in their expectation value
alone. It is obtained by dividing the number of outflowing
particles per unit time by the number of avalanches. The
latter is identical to the number of stable arches since they
occur alternately. Therefore, it is given by SParchQarch where
ParchQarch ¼ Parch=ð1=QarchÞ is thenumberof archesper unit
time. In addition, the number of outflowing particles
per unit time is obtained as weighted average of flow rates
for configurations on their distribution. Introducing 2L-
dimensional vectors jPi and hQj such that

jPi ¼
X

ðs1;…;sLÞ
Pðs1;…; sLÞjs1;…; sLi; (1)

hQj ¼
X

ðs1;…;sLÞ
Qðs1;…; sLÞhs1;…; sLj; (2)

where

js1;…;sLi¼ js1i⊗ �� �⊗ jsLi; j0i¼
�
1

0

�
; j1i¼

�
0

1

�
;

we canwrite theweighted average as hQjPi. The summationP
ðs1;…;sLÞ is over all configurations. Thus, the expectation

value of avalanche sizes m is represented as

m ¼ 1

SRðε; LÞ ; where Rðε; LÞ ¼ QarchParch

hQjPi : (3)

The form of (3) implies that the variables (γ, ε,L,N) ofm are
separated so thatRðε; LÞdependsonlyonphysical properties
of the system and S contains parameters (γ,N) which do not
have a simple interpretation in real systems. Since (γ, N)
depend on the length of the time step they have to be
determined empirically for each experiment.
In the following, we consider the distribution of con-

figurations in the steady state jPi to represent (3) in an
explicit form. Its time evolution is given by the master
equation. Using the quantum formalism (see, e.g., [15,16]),
it can be cast in the form of a Schrödinger equation with
some “Hamiltonian” H defined by the transition rates. In
the stationary state it takes the form

HjPi ¼ 0: (4)

The Hamiltonian is readily constructed from the update rule
of the model. Because of the 3-site interaction the
Hamiltonian of our model is more complicated than,
e.g., the asymmetric exclusion process.
We readily deduce det H ¼ 0 since the master equation

implies thatH has an eigenvalue 0. From the general relation
HðadjHÞjvi ¼ ðdetHÞjvi ¼ 0, where jvi is an arbitrary
vector, it follows that the formal solution of (4) is
ðadjHÞjvi. We choose jvi as the vector jVi ¼

P
ðs1;…;sLÞjs1;…; sLi.Wewill showelsewherethat thechoice

of jvi does not depend on the form of H. jPi is given by

jPi ¼ ðadjHÞjVi
hVjðadjHÞjVi : (5)

The denominator of jPi is the normalization constant for the
conservation of probabilities. After a cumbersome calcula-
tion, we obtain a simpler form of hwjPi where hwj is an
arbitrary vector:

hwjPi ¼ det½H þ jVihwj�
det½H þ jVihVj� : (6)

By using (6), Rðε; LÞ is given by

Rðε; LÞ ¼ det½H þ jVih1;…; 1j�
det½H þ jVihQj=Qarch�

: (7)

We emphasize that the result (6) is exact and holds for any
stochastic cellular automaton model with a finite number
of sites.
As shown in Fig. 3, the simulation results agree well with

the presumption that avalanche sizes in our model are
distributed exponentially. The exponential distribution of
avalanche sizes has also been observed in experiments and
other simulations of granular flow [8,9,11].
Let us now consider the jamming probability J. It is

interpreted in our model as the probability that an avalanche
size is less than a threshold M. Hence, it is obtained
by integrating the avalanche size distribution from 0
to M:

J ¼ 1 − expð−M=mÞ ¼ 1 − exp½−SMRðε; LÞ�: (8)

Although the dependence of Rðε; LÞ on ε has a rational
form as implied from (7), the dependence on L is nontrivial.
This fact motivates us to approximate Rðε; LÞ by an

FIG. 3. Histogram of avalanche sizes. The dotted line is
calculated with (3) under the presumption that the distribution
is exponential. Dots are simulation results for α ¼ β ¼ 0.7,
γ ¼ δ ¼ 0.3, L ¼ 4, and N ¼ 10.
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analytical function. Figure 4 shows that Rðε; LÞ is repre-
sented by an exponential function AðεÞ exp½−BðεÞL� for
ε ≥ 0.5. In fact, this assumption can be justified for the case
ε ¼ 1. Identifying AðεÞ and BðεÞ with Rðε; 3Þ and Rðε; 4Þ,
we can write the jamming probability with the Gompertz
function as

Jðε; LÞ ¼ 1 − expf−AðεÞSM exp½−BðεÞL�g; (9)

AðεÞ ¼ Rðε; 3Þ4Rðε; 4Þ−3; (10)

BðεÞ ¼ logRðε; 3Þ − logRðε; 4Þ: (11)

Rðε; 3Þ and Rðε; 4Þ are calculated from (7) as

Rðε; 3Þ ¼ εþ 23

4ð7εþ 17Þ ; (12)

Rðε; 4Þ ¼ 11ε2 þ 78εþ 103

2ð24ε3 þ 181ε2 þ 366εþ 197Þ : (13)

The simulation results shown in Fig. 5 agree well with
our previous assumptions that the avalanche size distribu-
tion and Rðε; LÞ are exponential.
The jamming probability J converges to 1 for any system

size in the limit M → ∞ in principle, as deduced from (9).
However, at a finite M the jamming probability becomes 0
at a finite system size L in practice. In experiments, this fact
corresponds to the existence of a critical outlet size above
which no arches appear [4,8].
A typical value of ε may be estimated from experimental

results. In [12], Mankoc et al. introduced the bivariate
model characterized by p and q, which indicate the
probability that a particle passes through the outlet without
forming an arch and the probability that a particle is
delivered from an arch, respectively. The parameters have

been experimentally estimated as p ¼ 0.981, q ¼ 0.836 for
an outlet of 3.02 grain diameters width. Although their
experiments are in three dimensions, we assume that the
results are appropriate for our model. From the definition, q
can be interpreted in our model as S ¼ 1 − q. Comparing
the expectation values of avalanche sizes deduced by both
models, we obtain that Rðε; LÞ ¼ ð1 − pÞ=ðpþ q − pqÞ.
Additionally, we use L≃ 6.9 which is reported from
experiments in [17] as the number of particles involved
in an arch for the outlet of 3.03 grains diameter width. Then
we obtain ε≃ 0.92. We interpret the dynamical behavior of
particles in front of a bottleneck as the cellular automaton
model with 3-site interactions arranged in a semicircular
shape. From the simulations and the analytical results we
can conclude that the model reproduces the generic
behavior which characterizes bottleneck flows in many-
particle systems. The resulting dynamics exhibits two clear
regions: jamming and continuous flow. The avalanche size
distribution is exponential and the jamming probability is
well approximated by the Gompertz function. The expect-
ation value of avalanche sizes and the coefficients of the
Gompertz function can be determined analytically. The
model reveals the existence of a critical outlet size above
which no arches appear in practice. The parameter ε, which
characterizes the physical properties of the model, can be
estimated by methods which have been used in previous
studies.
The model can be extended to be more compatible

with actual particle flows. Although we focus on two-
dimensional flows for simplicity, the model can be
extended to three-dimensional flows in a straightforward
way. Moreover, we have formulated the model assuming
that an arch appears only in a single semicircular layer.
Again the model can be made more realistic by considering
multiple layers to take into account the effects of the
upstream and allow for variations in arch size.

FIG. 4 (color online). Dependence of Rðε; LÞ on L. The dots
correspond to simulation results for different values of ε. The
lines are fixed by the two points Rðε; 3Þ and Rðε; 4Þ for
corresponding ε. It is found that for ε ≥ 0.5. Rðε; LÞ can be
approximated by an exponential function.

FIG. 5 (color online). Jamming probabilities as functions of
system size. The plots are simulation results and the lines are
defined by (9). The jamming probabilities gradually decrease
with increasing system size. They practically become zero
already for relatively small system size. The system parameters
are α ¼ β ¼ 0.45, γ ¼ δ ¼ 0.4, and N ¼ 10.
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