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Genetic drift at the frontiers of two-dimensional range expansions of microorganisms can frustrate local
cooperation between different genetic variants, demixing the population into distinct sectors. In a biological
context, mutualistic or antagonistic interactions will typically be asymmetric between variants. By taking
into account both the asymmetry and the interaction strength, we show that the much weaker demixing in
three dimensions allows for a mutualistic phase over a much wider range of asymmetric cooperative
benefits, with mutualism prevailing for any positive, symmetric benefit. We also demonstrate that
expansions with undulating fronts roughen dramatically at the boundaries of the mutualistic phase, with
severe consequences for the population genetics along the transition lines.
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When a population colonizes new territory, the abun-
dance of unexploited resources allows the descendants of
the first few settlers to thrive. These descendants invade the
new territory and form genetically distinct regions or
sectors at the population frontier. If the frontier population
is small, the birth and death of individuals create large
fluctuations in the sector sizes. These fluctuations, called
genetic drift, cause some settler lineages to become extinct
as neighboring sectors engulf their territory. Over time, this
sector coarsening process dramatically decreases genetic
diversity at the frontier [1,2].
Interactions between the organisms can modify the

coarsening process. For example, cooperative interactions,
in which genetic variants in close proximity confer growth
benefits upon each other, can lead to the founders’ progeny
remaining intermingled. Then, coarsening does not occur,
and the consequent growth pattern is called a “mutualistic
phase” [3]. Cooperative interactions are commonly found
in nature: microbial strains exchange resources [4], ants
protect aphids in exchange for food [5], and different
species of mammals share territory to increase foraging
efficiency [6]. Recently, a mutualistic phase was exper-
imentally realized in partner yeast strains that feed each
other [7,8]. These experiments require an understanding of
asymmetric interactions where species do not benefit
equally from cooperation. Antagonistic interactions may
also occur, e.g., between bacterial strains secreting anti-
biotics against competing strains [9]. These interactions
and the mutualistic phase also play prominent roles in
theories of nonequilibrium statistical dynamics [3,10–15].
We explore here asymmetric cooperative and antagonis-

tic interactions in two- and three-dimensional range expan-
sions. Two-dimensional expansions (d ¼ 1þ 1) occur
when the population grows in a thin layer, such as in a
biofilm or on a Petri dish. Three-dimensional expansions
(d ¼ 2þ 1) occur, for example, at the boundaries of
growing avascular tumors [16–18]. We model both flat

and rough interfaces at the frontier, the latter being an
important feature of many microbial expansions [19].
We arrive at the following biologically relevant results:

Three-dimensional range expansions support mutualism
more readily thanplanar ones, andamutualistic phaseoccurs
for any symmetric cooperative benefit. Conversely, two-
dimensional expansions require a critical benefit [3,10]. In
addition, we find that the frontier roughness is strongly
enhanced at the onset of mutualism for asymmetric inter-
actions. Finally, we find that frontier roughness allows for a
mutualistic phase over awider range of cooperative benefits.
Flat front models.—We consider two genetic variants,

labeled black and white. Cells divide only at the population
frontier [1]. Such expansions occur when nutrients are
absorbed before they can diffuse into the interior of the
population, inhibiting cell growth behind the population
front. This can occur in tumor growth [18] and in microbial
expansions at low nutrient concentrations [20].
According to a continuum version of a stepping stone

model [3,21], the coarse-grained fraction of black cells f ≡
fðx; tÞ at some position x along a flat population front at
time t obeys

∂tf ¼ D∇2f þ τ−1g fð1 − fÞ
�
s

�
1

2
− f

�
þ r
2

�
þ η; (1)

where D is a diffusivity, ηðx; tÞ an Îto noise term [1] with
hηðx; tÞηðx0; tÞi ¼ 2ldsτ−1g fð1 − fÞδðx − x0Þδðt − t0Þ, τg a
generation time, ds the spatial dimension, and l an effective
lattice spacing. Also, r ¼ α − β and s ¼ αþ β, where α
and β represent the increase in growth rates over the base
rate per generation of the black and white species, respec-
tively, in the presence of the other species. Equation (1)
describes the behavior of two-dimensional expansions of
mutualistic strains of yeast [7] and is expected to character-
ize many different range expansions [1,3]. At r ¼ s ¼ 0,
Eq. (1) reduces to the Langevin equation of the voter model
[14,15]. A signature of the mutualistic phase is a nonzero
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average density hρi of black and white cell neighbors
(genetic sector interfaces) at the front at long times. To
construct phase diagrams for our different models in Fig. 1,
we calculate hρi as a function of the cooperative benefits α,
β ≥ 0 and antagonistic interactions α, β < 0.
We propose a microscopic model for flat fronts in the

spirit of Grassberger’s cellular automaton [26], which
obeys Eq. (1) under an appropriate coarse graining, as
we verify in the following. Domain wall branching, shown
in Fig. 2(a), is required for a mutualistic phase in d ¼ 1þ 1
dimensions. Our model allows branching by having three
cells compete to divide into a new spot on the frontier
during each time step. To approximate cell rearrangement
at the frontier, we assume that the order of competing cells
in each triplet is irrelevant. The update rules are

(2)

where −1=2 ≤ α; β ≤ 2=3. The rules for all other combi-
nations follow from probability conservation. Positive α (β)
biases the propagation of a black (white) cell into the next
generation, due to beneficial goods (e.g., an amino acid in
short supply [7]) generated by two nearby cells of the
opposite type. Negative α and β represent the effect of cells
inhibiting the growth of neighboring competing variants.
For d ¼ 1þ 1, the model is implemented on a square

lattice (with one space and one time direction) with periodic
boundary conditions in the spatial direction. During each
generation (one lattice row along the spatial direction), the
states of all triplets of adjacent cells are used to determine
the state of the middle cell in the next generation using
Eq. (2). For d ¼ 2þ 1, we stack triangular lattices of cells
(representing successive generations) in a hexagonal close-
packed three-dimensional array. Each cell sits on top of a
pocket provided by three cells in the previous generation,
so Eq. (2) generalizes immediately (see the Supplemental
Material [22]).
These simple flat front models generate the rich phase

diagrams of Figs. 1(a) and 1(b). The d ¼ 1þ 1 diagram in
Fig. 1(a) resembles the stepping stone model result [3]. One
feature is a DP2 point, located at ðα; βÞ ¼ ðαc; αcÞ ≈
ð0.1242; 0.1242Þ in our model. Applying a symmetry-
breaking coefficient r≡ α − β ≠ 0 biases the formation
of either black (r > 0) or white (r < 0) cell domains, and
the DP2 transition crosses over to DP transitions along a
symmetric pair of critical lines scðrÞ≡ αcðrÞ þ βcðrÞ for

FIG. 1 (color online). The density hρi of genetic sector
interfaces along the population front at long times t (measured
in generations), averaged over 103 runs of the flat [(a) and (b)]
and rough [(c) and (d)] front range expansion models for
d ¼ 1þ 1 [(a) and (c)] and d ¼ 2þ 1 [(b) and (d)] (system
sizes L and L2 cells, respectively) for cooperative benefits α and β
defined in Eq. (2) [α0 and β0 for rough fronts in Eq. (5)]. The
parameters are (a) t ¼ 1.5 × 105, L ¼ 8 × 103; (b) t ¼ 3 × 103,
L2 ¼ 6002; (c) t ¼ 2.5 × 103, L ¼ 103; (d) t ¼ 500, L2 ¼ 502.
There is a mutualistic phase in the α; β > 0, (α0, β0 > 0) quadrant
in all panels. The solid lines in (a),(b), and (c) show the directed
percolation (DP) transition line shapes near the bicritical points
(see the Supplemental Material [22]). A symmetric DP (DP2)
point occurs at α ¼ β ¼ αc ¼ 0.1242ð5Þ in (a) and a “rough
DP2” point at α0 ¼ β0 ¼ αc

0 ¼ 0.0277ð2Þ in (c). The dotted lines
indicate the loci α ¼ 0, β ¼ 0, and α ¼ β.

FIG. 2 (color online). (a) A sample evolution of the flat front
model for d ¼ 1þ 1 at α ¼ β ¼ 0 (front size L ¼ 100). The rules
in Eq. (2) allow interface branching (circled event), facilitating
mutualistic mixing. The coarse-grained dynamics for α ¼ β < αc
are dominated by pair annihilations of interfaces (marked by
crosses) [12,13]. (b) We collapse the heterozygosity Hðx; tÞ,
averaged over 1600 runs with L ¼ 103, at different times (points
in main plot) and fit to Eq. (3) (solid lines) to findDeff in the inset.
The dashed line indicates the prediction Deff ¼ 1=3þ α (see the
Supplemental Material [22]).
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r < 0 and r > 0. As in typical cross-over phenomena [27],
the phase boundaries near the DP2 point are given by
r ∼�½scðrÞ − scð0Þ�ϕ, where scð0Þ ¼ 2αc ≈ 0.2484 and ϕ
is a cross-over exponent [28]. We find ϕ ≈ 1.9ð1Þ, con-
sistent with studies of related models [22,29]. Hence, we
confirm that our model is in the same universality class as
Eq. (1). Thus, many features of our nonequilibrium
dynamical models near the transition lines (e.g., the power
laws governing the phase boundary shape) will also appear
in the various range expansions describable by Eq. (1).
We now study the approach to the DP2 point along the

α ¼ β line for α < αc. As α increases from −1=3 to αc > 0,
domain boundaries between white and black sectors diffuse
more vigorously. To check that the entire line −1=3 <
α < αc with α ¼ β is dominated at long wavelengths by
the annihilation of domain wall pairs [see Fig. 2(a)], we
study the heterozygosity correlation function Hðx; tÞ ¼
hfðxþ y; tÞ½1 − fðy; tÞ� þ fðy; tÞ½1 − fðxþ y; tÞ�i, where
h…i is an ensemble average and an average over points
y along the front [1]. For a random initial condition of black
and white cells in equal proportion, Hðx; tÞ can be fit to

Hðx; tÞ ¼ 1

2
erf

�
xffiffiffiffiffiffiffiffiffiffiffiffi

8Defft
p

�
; (3)

where the fitting parameter Deff is the effective diffusivity
of the domain walls [1]. The dependence of Deff on α away
from the DP2 point is consistent with a simple randomwalk
model of domain walls (see the Supplemental Material
[22]), which predictsDeff ≈ 1=3þ α [inset of Fig. 2(b)]. As
we approach the DP2 point (α → α−c ) and domain wall
branching becomes important, we observe violations of
Eq. (3), consistent with field theoretic studies [12,13].
When d ¼ 2þ 1, two-dimensional domains at the voter

model point α ¼ β ¼ 0 lack a surface tension and readily
“dissolve” [15,30]. Our simulations show that these
dynamics allow for a mutualistic phase for all
α ¼ β > 0, with a remarkable pinning of the corner of
the “wedge” of mutualism in Fig. 1(b) to the origin. A
similar phenomenon occurs in branching and annihilating
randomwalks, where an active phase exists for any nonzero
branching rate for d ¼ 2þ 1 [13]. However, our model is
equivalent to the random walk model only for d ¼ 1þ 1
[14], and the potential connection in higher dimensions is
subtle. We now describe how we find the shape of the
mutualistic wedge for d ¼ 2þ 1.
When r ¼ 0, we find a voter model transition at

s ¼ scðr ¼ 0Þ ¼ 0, and any s > 0 pushes the system into
a mutualistic phase with a nonzero steady-state domain
interface density. A perturbation r ≠ 0 pushes the system
away from the voter model class by suppressing interface
formation and induces a DP transition at some scðrÞ > 0.
Upon exploiting cross-over results for a similar
perturbation in Ref. [31], we find phase boundaries given
by r ∼�scðrÞ= ln ½scðrÞ=s0�, where s0 ≈ 0.551 is a

nonuniversal constant found by fitting. The resulting
curves, plotted in Fig. 1(b), agree well with simulations
(see the Supplemental Material [22]).
When α ¼ β < 0 for d ¼ 2þ 1, we find dynamics

similar to a kinetic Ising model with a nonconserved order
parameter quenched below its critical temperature with an
interface density decay hρi ∼ t−1=2 [22,30]. A local “poi-
soning” effect penalizes domain wall deformations, creat-
ing an effective line tension σ between domains. To find σ,
we evolve initially flat interfaces of length L to an
approximate steady state. Fluctuations in the interface
position hðxÞ are characterized by its Fourier transform
hðqÞ. Upon averaging over many realizations, we expect
that, in analogy with capillary wave theory [27],

hjhðqÞj2i ¼ kBT
σLq2

; (4)

where T is an effective temperature. Figure 3 shows that the
dimensionless line tension σ=kBT increases as α becomes
more negative and that Eq. (4) gives the correct prediction
for hjhðqÞj2i. As we approach the voter model point
(α → 0−), σ=kBT vanishes with an apparent power law
σ=kBT ∼ jαj0.61. However, models with stronger noise
might have a voter-model-like coarsening for α ¼ β < 0,
instead [32].
Rough front models.—We model range expansions with

rough frontiers using a modified Eden model which tracks
cells with at least one empty nearest or next-nearest
neighbor lattice site [33]. Each such “active” cell i has a
birth rate

FIG. 3 (color online). The main plot shows the effective,
dimensionless inverse line tension kBT=σ in d ¼ 2þ 1 dimen-
sions [see Eq. (4)] for negative α (line guides the eye). Results are
from the final interface position hðxÞ in simulations of an initially
flat interface of length L ¼ 512 evolved for t ≳ 7000 generations.
The interface has overhangs and holes, and hðxÞ is the average
position for each x. The upper right inset is a sample interface for
L ¼ 128 and t ¼ 500. In the remaining inset, we confirm that
Eq. (4) correctly predicts the scaling with L by collapsing the
Fourier-transformed height hðqÞ, averaged over 160 runs, for
L ¼ 128, 256, 512, 1024.

PRL 112, 138102 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 APRIL 2014

138102-3



bi ¼
1

3
þ α0NwðiÞ or bi ¼

1

3
þ β0NbðiÞ; (5)

if the cell is black or white, respectively. We set the
background birth rates (i.e., for populations of all-black
or all-white cells) to 1=3 to make contact with a neutral flat
front model. Nb;wðiÞ denote the number of black and white
nearest neighbors of cell i, respectively.
At each time step, we pick an active cell i to divide into an

adjacent, empty lattice site with probability bi=btot, where
btot is the sum of the active cell birth rates. For d ¼ 1þ 1,
cells can divide into next-nearest neighbor spots to allow for
domain boundary branching (see the SupplementalMaterial
[22]). When computing quantities such as the interface
density,wewait for the undulating front to pass and then take
straight cuts through the population parallel to the initial
inoculation. The distance of the cuts from the initial
inoculation defines our time coordinate.
At thevotermodel pointα0 ¼ β0 ¼ 0, the roughness of the

front is insensitive to the evolutionary dynamics and genetic
domain walls inherit the front fluctuations [19,34]. The
average interface density satisfies hρðtÞi ∼ t−2=3 ∼ t−1=~z
[34], where ~z ¼ 3=2 represents the dynamical critical
exponent associated with the Kardar-Parisi-Zhang equa-
tion [35], or equivalently, the noisy Burgers equation [36].
We find that the interface density obeys this scaling for all
α0 ¼ β0 < αc

0 (see the Supplemental Material [22]). Rough
fronts yield novel critical behavior at the DP2 point for
d ¼ 1þ 1: The cross-over exponent governing the shape of
the phase diagram in Fig. 1(c) decreases considerably to
ϕ0 ≈ 1.27ð15Þ, from ϕ ≈ 1.9ð1Þ for flat fronts. This change
leads to a wider mutualistic wedge near the DP2 point. In
addition, we find a power law decay of the interface density,
hρðtÞi ∼ t−θDP20

, with a dramatically different critical expo-
nent θDP20 ≈ 0.61ð1Þ compared to θDP2 ≈ 0.285ð5Þ for flat
fronts [22,37]. For d ¼ 2þ 1, we did not have enough
statistics to precisely determine the phase diagram shape.
However, the DP2 point again appears to move to the origin.
The front roughness is a remarkable barometer of the

onset of mutualism. We characterize the roughness by

calculating the interface height hðx; tÞ and its root mean
square fluctuation hΔhðtÞi≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðhðx; tÞ − hhðx; tÞiÞ2i
p

,
where h…i is both an ensemble average and an average
over all points x at the front. Front fluctuations are greatly
enhanced along the pair of DP transition lines for d ¼
2þ 1 and d ¼ 1þ 1, as shown in Fig. 4. At long times, the
roughness saturates due to the finite system size
(see [22,33]).
Conclusions.—To summarize, we found that a mutual-

istic phase is more accessible in three-dimensional than in
two-dimensional range expansions. Also, antagonistic
interactions between genetic variants in three dimensions
create an effective line tension between genetic domains.
The line tension vanishes at a neutral point where the
variants do not interact and where the mutualistic phase
wedge gets pinned to the origin. In addition to the power
laws governing the phase diagram shapes in Figs. 1(a),1(b),
and 1(c), we found a striking interface roughness enhance-
ment at the onset of mutualism. These results should apply
to a wide variety of expansions because they are insensitive
to the microscopic details of our models along transition
lines, where we expect universal behavior at large length
scales and long times. The existence of universality has
been established for flat fronts [11] and a recent study
points to a rough DP universality class [33].
It would be interesting to compare two- and three-

dimensional range expansions of microorganisms [7,8]
to test the predicted pinning of the mutualistic phase to
the α ¼ β ¼ 0 point. In two dimensions, these expansions
are readily realized in Petri dishes [38,39]. In three
dimensions, one may, for example, grow yeast cell pillars
on a patterned Petri dish with an influx of nutrients at one
end of the column, or study the frontier of a growing
spherical cluster in soft agar [40].
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