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Critical behavior near the smectic A-C tricritical point is studied using renormalization group techniques.
Critical fluctuations induce a singular softening of the smectic bulk modulus in the A phase. At the
tricritical point, the quasi-long-range positional order of the smectic layers is destroyed. Despite this loss of
order, dislocations remain bound so that smectic elasticity is retained but becomes anomalous, i.e., length
scale dependent. The critically induced large layer fluctuations lead to negative thermal expansion of the
layers in the A phase and may explain the origin of de Vries behavior. Experimental predictions are given
for the temperature dependence of the smectic bulk modulus, x-ray structure factor, and layer spacing in the
A phase.
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Since the development of the renormalization group, an
enormous amount of work has been carried out to inves-
tigate critical behavior at phase transitions. The variety of
systems exhibiting critical behavior is incredibly rich:
ferromagnets, antiferromagnets, superconductors, liquid
crystals, superfluids, and disorder driven metal-insulator
transitions, to name a few. In many of these systems, there
is a coupling between the critical order parameter (e.g.,
magnetization) and a noncritical field (e.g., underlying
lattice elasticity), and the interplay between the two is a
topic of significant importance [1]. It is known that critical
fluctuations can induce weak singularities in the noncritical
field; see, e.g., Ref. [2]. Until now, however, despite
the wide range of systems studied, these singularities have
been shown to be sufficiently weak so that the noncritical
field retains its order; e.g., the lattice retains long range
positional order at the paramagnetic–ferromagnetic
transition.
In this Letter, we show that it is possible for critical

fluctuations of the order parameter to significantly affect
the order of an underlying noncritical field. The phase
transition exhibiting this novel and dramatic behavior is the
well known tricritical smectic A-C transition in liquid
crystals, and the noncritical order that is destroyed is the
quasi-long-range positional order (QLRPO) of the smectic
layers [3]. Aside from the significance of this result in the
general context of phase transitions and critical behavior, it
has important implications, both scientific and technologi-
cal, for the AC transition. In particular, we believe it may
explain the origin of the much debated de Vries behavior
(an unusually small change in layer spacing at the AC
transition) [4].
Smectics have density modulated along one direction

(ẑ), as shown in Fig. 1. Their elongated molecules tend to
align their long axes along a common direction n̂. In the A
phase, n̂ ¼ ẑ, while in the lower temperature C phase, n̂

lies at an angle θ to ẑ. The C phase order parameter c is the
projection of n̂ onto the layering plane. Following de
Gennes’s observation [5] that the AC transition should
belong to the 3d XY universality class, further analyses
were performed [1,6,7], all of which incorporated layer
fluctuations. As shown in Fig. 1, the displacement field
uðrÞ describes the layer deviation, at position r, from its
ground state. Layer fluctuations are measured by the

correlation function gðr⊥; zÞ≡ q2L
2
h½uðr⊥; zÞ − uð0; 0Þ�2i,

where the angled brackets denote a thermal average and
qL ¼ 2π=a, with a the layer spacing. It was found that
layering fluctuations should not affect the 3d XY univer-
sality classification and also [7] that the A phase layering
behavior is unaffected by c’s critical fluctuations; i.e.,
gðr⊥; zÞ still grows logarithmically with distance:

gðr⊥; zÞ ≈
�
η ln r2⊥ z ¼ 0

η ln z r⊥ ¼ 0;
(1)

FIG. 1 (color online). Inset: The smectic A and C phases and
order parameter c. Also shown is a layer (solid line) undulating
about its ground state (dotted line). The displacement is repre-
sented by the field uðrÞ. The local layer spacing, e.g., a, is
measured along the z direction. Thus, the average layer spacing of
the undulating state is larger than that of the ground state (a0).
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where η is a nonuniversal, weakly T dependent exponent.
The slow, logarithmic (as opposed to algebraic) growth of
fluctuations corresponds to the well known QLRPO with
associated quasisharp (as opposed to delta-function) Bragg
peaks in x-ray scattering. For a peak centered atmqLẑ (with
m an integer), the intensity scales with wave vector
q ≈mqLẑ like

IðqÞ ∼
(
q−4þ2m2η
⊥ qz ¼ mqL

ðqz −mqLÞ−2þm2η q⊥ ¼ 0.
(2)

The analyses [1,6,7] did not consider AC transitions that are
near a tricritical point (where first and second order phase
boundaries meet). Early work on tricritical points in
magnetic systems [8] established that tricritical fluctuations
are larger than those for nontricritical transitions. Thus, it is
of interest to understand how these strong fluctuations
affect the already soft smectic elasticity. Experiments, e.g.,
Ref. [9], indicate that many transitions occur near a
tricritical point and display significant fluctuation effects,
including a critical suppression of the smectic bulk modu-
lus B. Indeed, most de Vries smectics have a transition at or
close to tricriticality [10].
Here, we present the first renormalization group (RG)

analysis of the effects of critical fluctuations on layering in
the A phase near a tricritical AC transition. Unlike tran-
sitions away from tricriticality, these effects lead to very
large layer fluctuations, with important experimental and
technological consequences. We show that B is singularly
suppressed upon approach to the tricritical point. As a
result, the correlation function gðrÞ and peak intensity IðqÞ
are still described by Eqs. (1) and (2), but with a strongly T
dependent exponent ηðTÞ. In d ¼ 3, ηðTÞ ∝ ðT − TcÞ−1=4,
with Tc the transition temperature. The intensity peaks are
correspondingly broadened as the transition is approached.
In fact, all divergent peaks will be replaced by finite, cusp
singularities for Tc < T < Td, where Td is given by
ηðTdÞ ¼ 2. At the tricritical point (T ¼ Tc), B displays
anomalous elasticity; i.e., it becomes length scale depen-
dent, resulting in the destruction of QLRPO. The correla-
tion function gðrÞ now grows algebraically with distance:

gðr⊥; zÞ ∼
(
rð10−3dÞ=2⊥ z ¼ 0

zð10−3dÞ=d r⊥ ¼ 0;
(3)

giving exponents 1=2 and 1=3 in d ¼ 3. Correspondingly,
the intensity peaks are now finite and without cusps. We
also investigate the effects of B’s singular softening on
layer spacing behavior in the A phase and predict negative
thermal expansion as the transition is approached. Last, we
argue that de Vries behavior in the C phase is due to the
large layer fluctuations near the tricritical point.

Our model’s Hamiltonian is

H ¼
Z

ddr

�
1

2
tjcj2 þ 1

2
Kcj∇cj2 þ vcjcj4 þ scjcj6

þ 1

2
Bγ2 þ 1

2
Ksð∇2⊥uÞ2 þ gγjcj2

�
; (4)

where t ∝ ðT − TcÞ. We use a single elastic constant Kc,
rather than separate splay, bend, and twist constants [11]. B
and Ks are the smectic bulk and bend elastic moduli, and
γ ≡ ∂zu − 1

2
ð∇⊥uÞ2. The ∂zu piece corresponds to the

fractional change in the layer spacing and is positive for
expansion. The second part of γ is required to satisfy
rotational symmetry and leads to weak anomalous elasticity
[12]. The coupling between the layering and c is controlled
by g > 0. The jcj6 term, with sc > 0, is required to stabilize
the system in theC phase. In the A phase, which is the focus
of our analysis, this term has two unimportant effects. The
first is a finite renormalization of vc. The second effect
(small because in d ¼ 3, the sc term is only marginally
relevant in the RG sense) is a negligible logarithmic
correction to the leading order T dependence of the specific
heat [13].
Setting γ ¼ ∂zu (and thus ignoring purely u dependent

anharmonic terms) and integrating out u fluctuations from
the partition function results in a purely c dependentH with
vc replaced by v0c ¼ vc − g2=2B [1]. v0c is independent of
Ks because the effect of the anisotropy of the smectic
elasticity [i.e., ð∂zuÞ2 vs ð∇2⊥uÞ2] vanishes in the long
length scale limit. This means that the critical behavior of
the order parameter c is unaffected by its coupling to u.
(While not obvious, we have shown that this remains true
even when anharmonicities in u are retained.) Thus, one
can focus on the effects of c on u, without worrying about
the reverse.
One can gauge these effects by using perturbation theory.

The anharmonic term gγjcj2 leads to a negative (softening)
correction to B:

δB ¼ −2kBTg2hjcj2ðqÞjcj2ð−qÞiq¼0 ∝ t−α; (5)

where jcj2ðqÞ ¼ V
R ðddp=ð2πÞdÞcðpÞ · cð−p − qÞ, with V

the volume and cðqÞ the Fourier transform of cðrÞ. The
correlation function hjcj2ðqÞjcj2ð−qÞiq¼0 scales like t−α,
where α is the specific heat exponent. Away from the
tricritical point (i.e., at the Wilson-Fisher fixed point),
α < 0 and B receives an innocuous, finite correction.
However, for a tricritical transition, α ¼ ð4 − dÞ=2, and
for d < 4, the downward correction to B diverges at the
tricritical point [14].
To deal with this apparent divergence, we employ the

standard momentum shell RG transformation. We separate
the fields into high and low wave vector components:
cðrÞ ¼ c<ðrÞ þ c>ðrÞ and uðrÞ ¼ u<ðrÞ þ u>ðrÞ. The >
fields [e.g., c>ðqÞ] have support in the high wave vector
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range Λe−l < q < Λ, where Λ ¼ 1=a is the ultraviolet
cutoff and l is RG “time.” The > fields are integrated out,
and the length is then rescaled isotropically as r ¼ r0el to
restore the UV cutoff back to Λ. The < fields are also
rescaled: c<ðrÞ ¼ c0<ðr0Þeχcl and u<ðrÞ ¼ u0<ðr0Þeχul. The
choice of χc and χu is arbitrary and does not affect the
physical results, so we choose χc ¼ ð2 − dÞ=2 and χu ¼
ð4 − dÞ=2 to keep Kc and Ks fixed. By perturbatively
integrating out the> fields to one-loop order, we obtain the
RG flow equations for l ≫ 1:

dt=dl ¼ 2tþ 4ðnþ 2Þð1 − t=KcΛ2Þμ; (6a)

dB=dl ¼ð2 − wÞB; (6b)

dμ=dl ¼ ½ϵ − 4ðnþ 8Þμ�μ; (6c)

dw=dl ¼ ½ϵ − w − 8ðnþ 2Þμ�w; (6d)

where ϵ ¼ 4 − d, and n ¼ d − 1 is the number of compo-
nents of c. The dimensionless parameters μ≡ kBT
ðSdΛd−4=ð2πÞdK2

cÞðvc − ðg2=2BÞ þ ð3scðnþ 4ÞÞ=ðd − 2ÞÞ
and w≡2nkBTðSdΛd−4=ð2πÞdÞðg2=BK2

cÞ>0, where Sd is
the surface area of a d-dimensional unit-radius sphere [15].
The RG flows of μ and w are shown in Fig. 2 for d < 4. The
two w ¼ 0 fixed points correspond to an absence of c-u
coupling (i.e., g ¼ 0) and do not concern us. The Wilson-
Fisher (WF) fixed point controls 3d XY critical behavior.
It is the tricritical (TC) fixed point at w� ¼ ϵ that controls
the behavior of the system at the tricritical point. As
expected, TC lies on the separatrix (μ ¼ 0) dividing
parameter space into a domain of first order transitions
(with runaway μ < 0 flows) and the μ > 0 domain with

flows to the WF fixed point controlling 3d XY critical
behavior.
Having found the tricritical fixed point, we use Eqs. (6)

to analyze the A phase layer fluctuations, characterized by
the correlation function GðqÞ ∝ huðqÞuð−qÞi, which can
be related to the renormalized G by matching

Gðq; t; Kc=s; B; wÞ
¼ eðdþ2χuÞl�Gðqel� ; tðl�Þ; Kc=sðl�Þ; Bðl�Þ; wðl�ÞÞ; (7)

with t, Kc, Ks, B, and w the physical parameters. We
choose l� such that the renormalized correlation length
ξðl�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kcðl�Þ=tðl�Þp ¼ Λ−1, and the renormalizedG is
evaluated in the noncritical region. Near the transition,
l� ≫ 1, so that wðl�Þ ≈ w� ¼ ϵ, giving

GðqÞ ¼ kBT
BðTÞq2z þ Ksq4⊥

; T > Tc; (8)

with BðTÞ ¼ BτðTÞϵ=2, where B is the unrenormalized bulk
modulus, and τðTÞ ¼ tðTÞ=KcΛ2 ¼ ðT − TcÞ=Tc. Using
GðqÞ, one obtains gðrÞ, given by Eq. (1) with

ηðTÞ ¼ πkBT

2a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KsBðTÞ

p ; (9)

which, in 3d, gives ηðTÞ ∝ ðT − TcÞ−1=4. Using Eqs. (2)
and (9), we find the T below which divergent peaks are
absent: Td ¼ Tc½1þ ðη=2Þ4�, where η is given by Eq. (9),
with the bare B, and T ¼ Tc. At the tricritical point, t ¼ 0,
and we choose l� so that qel

� ¼ Λ and find

GðqÞ ¼ kBT
BðqÞq2z þ Ksq4⊥

; T ¼ Tc; (10)

where the anomalous elasticity BðqÞ ¼ Bq=Λ vanishes as
q → 0. Correspondingly, at tricriticality, the u-u correlation
function gðrÞ diverges as r → ∞, according to Eq. (3),
implying the destruction of QLRPO for d < 10=3.
We also predict that even for a transition that is close to,

but not at, tricriticality, there will be a window τG < τ < τB,
within which there is significant (but nonsingular) soften-
ing of B and large layer fluctuations. Standard analysis [16]
gives τB ¼ ðw=w�TCÞ2=ϵ and τG ¼ ðμ=μ�WF

Þ2=ϵ, with w�TC ¼
ϵ and μ�WF

¼ ϵ=4ðnþ 8Þ. The Ginzburg temperature τG is
the crossover from tricritical Gaussian behavior (analyzed
in this Letter) to nonsingular behavior controlled by the
WF fixed point. Figure 2 shows the corresponding BðτÞ
crossover.
The destruction of QLRPO at the tricritical point does

not necessarily mean that the smectic melts, i.e., that the
system no longer displays smectic elasticity. In general, the
loss of smectic elasticity is the result of dislocation
proliferation, so to assess the stability of the smectic at
the tricritical point, we must determine if dislocations

FIG. 2. (a) RG flows for μ and w. The w ¼ 0 fixed points
correspond to zero c-u coupling. WF at μ� ¼ ϵ=4ðnþ 8Þ and
w� ¼ ϵð4 − nÞ=ðnþ 8Þ is the usual Wilson-Fisher fixed point
controlling 3d XY critical behavior. The fixed point TC at μ� ¼ 0
and w� ¼ ϵ controls tricritical behavior. (b) Bulk modulus BðτÞ
and layer spacing aðτÞ vs reduced temperature τ ¼ ðT − TcÞ=Tc.
Near a tricritical transition, BðτÞ ∝ τϵ=2, where ϵ ¼ 4 − d. For a
transition close to, but not at, tricriticality, B’s softening is cut off
below the Ginzburg temperature τG, and B (dotted line) remains
finite. Large layer fluctuations induced by B’s softening cause
aðτÞ to exhibit negative thermal expansion for τ > τp. As the
proximity of the transition to tricriticality decreases, the value of
τp increases.
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remain bound when B vanishes at long wavelengths.
Fortunately, such a nontrivial analysis has been carried
out in the context of a transition between A phases of
different layer spacings [17] and shows that a vanishing B
does not lead to dislocation unbinding. Thus, despite the
destruction of QLRPO, the system still possesses smectic
elasticity, but of an anomalous, wave vector dependent
variety [3].
The behavior of the layer spacing aðTÞ near tricriticality

in the A phase can also be investigated using our RG
treatment. The fractional change in layer spacing Δa=a is
given by h∂zui, so that

Δa
a

¼ 1

B

�
−ghjcðrÞj2i þ B

2
hj∇⊥uðrÞj2i

�
. (11)

The hjcðrÞj2i piece corresponds to the layer contraction due
to tilting of the molecules and, for transitions far from
tricriticality, it dominates the T dependence of aðTÞ, which
in d ¼ 3 scales like aðTÞ ¼ aðTcÞ þ AτðTÞ1=2, where
A ∼ nkBTcg=KcB. Thus, as such a transition is approached,
aðTÞ decreases and exhibits a cusp singularity at Tc. For a
tricritical transition, one must also take into account the
singular softening of B and growth of layer fluctuations.
The latter effect results in layer undulations (i.e., nonzero
hj∇⊥uðrÞj2i) which, as shown in Fig. 1, tend to increase
layer spacing a. We calculate Δa=a near the tricritical point
using matching and find

aðTÞ ¼ aðTcÞ þ A

�
τðTÞ1=2 − 2τðTÞ3=4

3τ1=4p

�
; (12)

where τp ∼ ðnaðTcÞK1=2
S g=B1=2KcÞ4. The extra τðTÞ3=4

contribution is due to the layer fluctuations. As shown
in Fig. 2, for τðTÞ > τp, it tends to increase aðTÞ as the
transition is approached. This negative thermal expansion
(NTE) is observed in most de Vries materials, which are
known to exhibit transitions at or near tricriticality. This is
particularly puzzling when NTE is accompanied by a
decrease in orientational order upon approach to the
transition [4]. Thus, we propose that NTE is due in
significant part to the layer fluctuations, which are par-
ticularly strong near the tricritical point. Using a general-
ized Landau theory [18], it can be shown that τp ∝ S4, with
S the bare orientational order where, by “bare,”we mean far
from the AC transition. In de Vries smectics, S is unusually
small (due to the absence of a nematic phase), which would
make τp small, perhaps small enough that the window
(0 < τ < τp) may be difficult to observe.
Finally, we discuss the layering behavior on the low T

side of the transition, i.e., in the C phase. It is well known
[16] that, even in the absence of coupling to noncritical
fields, RG analysis on the low T side of the transition is
considerably more difficult for n > 1 due to the Goldstone
mode of the ordered phase. Nonetheless, experimental

work [9], showing a a significant softening of B on the
low T side, helps to compensate for the lack of rigorous
theoretical analysis. From the analysis presented here, it is
reasonable to expect that this softening of B will be
accompanied by large layer fluctuations which, as shown
above, tend to increase the layer spacing. Thus, upon entry
to the C phase, the expected decrease in layer spacing due
to the development of c order will be offset by the increase
in layer spacing due to the critically induced layer fluctua-
tions. This may go some way to explaining de Vries
behavior (the unusually small change of layer spacing
upon entry to the C phase), which generally occurs in
materials with a transition at or near tricriticality. It should
be pointed out that by design, the RG is used to model long
length scale effects. Thus, small length scale effects such as
molecular conformational change and layer nanosegrega-
tion cannot be modeled by the RG but could also have a
role to play in de Vries behavior. The importance of the
large layer fluctuations, critically induced at long length
scales, should be tested using our predictions for the x-ray
structure factor.
In conclusion, we have presented the first example of a

system in which critical fluctuations destroy the underlying
noncritical order. Moreover, we have shown that the
associated softening of the bulk modulus and the large
layer fluctuations near a tricritical point may explain the
origin of de Vries behavior in smectics.
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