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We find that electron states at the bottom of the conduction bands of covalent semiconductors are
distributed mainly in the interstitial channels and that this floating nature leads to the band-gap variation
and the anisotropic effective masses in various polytypes of SiC. We find that the channel length, rather
than the hexagonality prevailed in the past, is the decisive factor for the band-gap variation in the polytypes.
We also find that the floating nature causes two-dimensional electron and hole systems at the interface of
different SiC polytypes and even one-dimensional channels near the inclined SiC surface.
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Most semiconductors, elemental or compound, have the
fourfold coordinated tetrahedral structure caused by the
hybridization of atomic orbitals. It is written in textbooks
[1] that the resultant hybridized sp3 bonding orbitals
constitute valence bands, whereas the antibonding counter-
parts constitute conduction bands. This is not necessarily
true, however: We have recently found that the wave
functions of the conduction-band minima (CBM) of the
semiconductors are distributed not near atomic sites but in
the interstitial channels [2], as shown in Fig. 1. The wave
functions float in the internal space, i.e., the channels,
inherent to the sp3-bonded materials.
Another structural characteristic in the semiconductor is

the stacking of atomic bilayers along the bond axis
direction such as AB (wurtzite) or ABC (diamond or zinc
blende). The different stacking sequence leads to the
different polytype [6] generally labeled by the periodicity
of the sequence n and its symmetry, hexagonal (H) or cubic
(C), as in 2HðABÞ, 3CðABCÞ, 4HðABCBÞ, and so on.
These differences in the stacking sequence have been
assumed to be minor in the electronic properties.
However, the sequence determines the lengths and the
directions of the interstitial channels, thereby affecting the
shapes of the wave functions of CBMs. The internal space
overlooked in the past may be closely related to the
electronic properties of the semiconductors, which we
discuss in this Letter.
Silicon carbide (SiC) is a promising material in power

electronics due to its superior properties that are suitable to
operations under a harsh environment [7]. From science
viewpoints, SiC is a manifestation of the polytypes
explained above: Dozens of polytypes of SiC are observed,
and the band gaps vary by 40%, from 2.3 eV in 3C to
3.3 eV in 2H despite that the structures are locally identical

to each other in the polytypes [8]. This mysterious band-
gap variation has been discussed in terms of an empirical
quantity, hexagonality [9], for a half century: A bilayer
sandwiched by the two same stacking indexes, as in 2H
structure, is called a hexagonal layer, and the ratio of the
hexagonal layers in whole stacking sequence is called
hexagonality; the band-gap variation in the polytypes is
argued to be linear with respect to the hexagonality. Yet, the
linearity is not satisfactory (see below) and, moreover, the
underlying physics is totally lacking.
In this Letter, we find, on the basis of the density-

functional calculations (see the Supplemental Material
[10–12]) that the extent of the internal space, i.e., the length
of the interstitial channel, in covalent semiconductors is
decisive in the nanoscale shapes of thewave functions of the
CBM and thereby explains the mysterious variation of the
band gap in SiC polytypes. We also find that the observed
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FIG. 1 (color online). Energy bands and the contour plot of the
Kohn-Sham (KS) orbital of the conduction-band minimum at M
in 3C-SiC shown on the (01̄1) plane. The orbital is distributed
along the [110] channel. The calculation has been done with the
hybrid exchange-correlation functional, HSE [3,4]. White and
burgundy balls depict C and Si atoms, respectively. Simple
localized-orbital basis sets are incapable of describing the floating
nature of the conduction-band states [2,5].
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anisotropy of the effective masses in SiC and the pressure
dependence of the band gaps generally observed in most
semiconductors are naturally explained in terms of the
channel length. Further, we find that the stacking control
dramatically modifies the electronic properties, leading to
the generation of low-dimensional electron and hole systems
in three-dimensional SiC.
The sequence of the atomic bilayers determines the

length and direction of the interstitial channels: e.g., in the
3C polytype the channel along h110i extends infinitely,
whereas in the 6H polytype the channel along h22̄01i has a
finite length of 7a0=2

ffiffiffi

2
p

(a0: lattice constant). To examine
the relation between the extent of the internal space and the
band gap, we consider 24 representative stacking sequences
in 3C and nH (2 ≤ n ≤ 12) polytypes. Details of the 24
polytypes are listed in the Supplemental Material [13]. In
the 2H, 3C, 4H, and 5H polytypes, the sequence of the
bilayer stacking is unique. In the 6H, 8H, 10H, and 12H
polytypes, there are 2, 6, 18, and 58 possibilities in the
stacking sequence, respectively [14]. The possible values of
the hexagonality in the 10H polytype are 20%, 40%, 60%,
and 80%, whereas those in the 12H polytype are 16.7%,
33.3%, 50%, 66.7%, and 83.3%. Our 24 representatives
include all the possible hexagonality in the 6H, 8H, 10H,
and 12H polytypes [15].
Calculated band gaps for these representative polytypes

of SiC are plotted as a function of either the hexagonality or
the channel length in Fig. 2. Here, the channel length is
defined as the number of bilayers along the longest
interstitial channels. The left panel in Fig. 2 shows a
positive correlation between the band gap and the hex-
agonality. However, the linearity between the two is poor:
The best fitted function we have obtained is ϵg ¼ 1.425þ
0.0124h in eV (h: hexagonality) with the large variance of
355 meV. On the other hand, the band gap as a function of
the channel length shows monotonic decrease, indicating
that the channel length is a proper quantity to describe the

band gap. We have indeed found that the calculated band
gaps εg are nicely fitted to a single function of the channel
length l as

εg ¼ 1.425þ 17.63
ðlþ 1.268Þ2 ; (1)

in eV with the variance of 85 meV.
As stated above, the wave function of the CBM floats in

the interstitial channel the length l of which is determined
by the way of stacking of atomic bilayers. Hence, the CBM
state is regarded as being confined in the one-dimensional
quantum tube with the length l. The energy level εl thus
confined is given by [5]

εl ¼ ε3C þ π2ℏ2

2m�ðlþ ΔÞ2 ; (2)

where ε3C is the energy level of 3C-SiC, which has infinite
channel length, and m� is the effective mass along the
channel direction. The Δ in the second term represents
the spill of the wave function from the quantum tube with
the length l. Since the valence-band top has a character
of the bonding sp3 orbitals common to all the polytypes
[2,5], the variation in Eq. (2) corresponds to that in the band
gap in the polytypes expressed in Eq. (1). Our generalized
gradient approximation calculation indeed provides
ε3C ¼ 1.419 eV, showing agreement with the first term
in Eq. (1). By further comparing the second terms in
Eqs. (1) and (2), we obtain the effective mass of m� ¼
0.326m0 (m0: bare electron mass), which shows agreement
with the experimental value of m� ¼ 0.363m0 [16]. The
factor 1.268 in the unit of the bilayer length in the
denominator of the fitting function (1) indicates that
the confinement is imperfect, and the wave function spills
from the interstitial tube by about a single bilayer.
We have now clarified that the channel length rather

than the hexagonality is the principal quantity to determine
the band-gap variation. This situation becomes visible by
examining the wave function of the CBM. Figure 3
shows the Kohn-Sham orbitals of the CBM for the two
10H-SiC polytypes where the stacking sequences are
ABCABCABAB and ABCACBCACB, respectively. The
hexagonality of the two polytypes is identical, i.e., 40%.
However, the calculated band gap is 1.59 eV for the former
and 2.07 eV for the latter. This difference in the gap
beautifully corresponds to that in their channel lengths, 8
and 4, respectively (see the Supplemental Material [13]).
The wave function of CBM floats along h10 1̄0 03i for both
polytypes as is shown in Fig. 3. Yet the length of the
channel and consequently the extension of the wave
function is substantially longer for the former polytype,
leading to the narrower band gap.
The calculated band gaps in the right panel of Fig. 2

show small but sizable variance from the fitting function

FIG. 2 (color online). Band gaps for 24 representative SiC
polytypes calculated in generalized gradient approximation as a
function of the hexagonality (left panel) and a function of the
channel length (right panel). In each panel, the fitting function
(see text) is also shown. The corresponding variance is 355 meV
for the left (hexagonality) and 85 meV for the right (channel
length).
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described above. This variance is a consequence of
spontaneous polarization (SP) in the region of the hexago-
nally stacked bilayers (hexagonal stacking). Let us con-
sider the polytypes with the 4-bilayer channel length in
Fig. 2: A 12H polytype whose stacking sequence is
ABCACACACACB shows a 0.1 eV narrower band gap
than those of other polytypes with l ¼ 4. Figure 4(a) shows
calculated local density of states near the energy gap for
this 12H-SiC. The spiky contrast below the energy gap

(black region) manifests atomic positions along the stack-
ing direction. It is clearly shown that the conduction bands
in the region with the cubic stacking (ABC) are located at
lower positions in energy than in the hexagonal stacking
region. More importantly, SP takes place in the hexagonally
stacked region due to the lack of inversion symmetry and
renders the band lineup slanted in real space along the
stacking direction. Furthermore, the counterpolarization in
the cubic region makes it slanted in the reverse direction as
in Fig. 4(a). We have found that the slanted band lineup
causes downward (upward) shift of the conduction
(valence) band edge and the band gap becomes narrower.
We have, indeed, calculated the band-gap variation by

increasing the thickness of the hexagonal bilayers with
the thickness of the cubic region fixed at five bilayers
[Fig. 4(b)]. The calculated band gaps decreases monoton-
ically. This is a consequence from the enhanced band
slanting induced by the polarization. The estimated band
gap decrease by adding a single bilayer in the hexagonally
stacked region is 10 meV. By the use of this quantity, the
estimated band gap of the 12H-SiC (ABCACACACACB)
without SP is 2.07 eV, which is just on the fitting function
in Fig. 2. This finding opens the possibility of band-gap
tuning by changing the thickness of the hexagonally
stacked region.
We have revealed that the floating nature of the CBM

causes the band offset at the interface between the cubic-
stacking and the hexagonal-stacking regions. The SP in the
hexagonal region combined with the counterpolarization in
the cubic region generates two-dimensional electron and
hole gases at the interface. It may be evident from local
density of states slanted in real space, as is shown in
Fig. 4(a). It is further quantified by calculating the effective
masses of the CBM and the valence-band maximum along
the stacking direction in the polytypes: It is found that the
effective mass along the direction increases to 100m0,
whereas that in the lateral plane keeps its value of 0.67m0

for electron and 2.20m0 for hole (not shown). This finding
of the carrier confinement is the generalization of the
heterocrystalline superlattice of SiC first proposed by
Bechstedt and Käckell [17] and later pursued theoretically
[18–20]. We emphasize here that the underlying physics,
unrevealed in the past, is that the floating nature of the
CBM states is controlled by the nanoshapes of the interstitial
channels. The anisotropic effective mass observed in the
6H-SiC polytype [21] is one of the fingerprints of such a
floating nature.
Another noteworthy feature of the floating state is its

pressure dependence. Figure 5(a) shows the pressure
dependence of the CBM energy at several high-symmetry
k points. The M point energy shifts downward with
increasing the pressure, whereas the Γ point energy shifts
upward. The latter is easily understood by the enhancement
of the bonding-antibonding splitting. The former is a con-
sequence of the floating nature. As shown in Fig. 5(b), the

FIG. 3 (color online). Contour plots on the (112̄0) plane of the
KS orbitals of the conduction band minimum at M for 10H-SiC
with the ABCABCABAB stacking (left panel) and with the
ABCACBCACB stacking (right panel). The value for each
contour color is relative to the corresponding maximum absolute
value. White and burgundy balls depict C and Si atoms,
respectively. The broken lines represent the interface where
the longest channel in the cubic region is blocked by the
hexagonal region.

(a) (b)

FIG. 4 (color online). (a) Local density of statesDðε; zÞ near the
band gap for the 12H-SiC (ABCACACACACB) with its side
view of the atomic structure. The shaded region in the side view
depicts the cubic stacking region. The lower panel is the
extension of Dðε; zÞ near the valence-band top. The ordinate ε
is the electronic energy, where the Fermi energy is set to be 0, and
the abscissa z is the coordinate along the stacking direction. The
value of Dðε; zÞ is represented by the color code (yellow: high,
black: low). The black region corresponds to the energy gap.
(b) Band-gap variation as a function of the thickness of
hexagonal-stacking region of SiC polytypes with the thickness
of the cubic stacking region fixed with five bilayers.
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reduction of the kinetic-energy contribution to the orbital
energy is one of the characteristics of the floating state. This
is due to the extended distribution in the internal space of
the floating state. When the lattice constant is reduced
under the pressure, the kinetic energy generally increases,
but in the floating state such an increase is minor. This
causes the lack of the upward shift or even the downward
shift at the M point. The floating nature is not restricted to
SiC. Figure 5(c) shows the CBM energy variation in
pressurized GaAs. The CBM at the M point, which is
folded from the X point in the cubic BZ, shifts downward
with increasing pressure. We have actually found that the
KS orbital at the M point has floating character in
pressurized circumstances [see Fig. 5(d)]. The direct-
and indirect-gap transition in the pressurized GaAs well
established in experiments [22] is a manifestation of the
floating nature of the CBM states.
Nanofabrication of the semiconductor surfaces introdu-

ces further modification of wave functions of the floating
states by controlling the internal space. Suppose, e.g.,
5H-SiC, which has the interstitial channels along the
h55̄03i direction with the finite length of five bilayers.
When the surface is inclined relative to the h0001i direction
with the angle of θ, the lengths of the channels near the
surface vary depending on the lateral positions like a

xylophone [Fig. 6(a)]. In this case, the lowest CBM state
is distributed along the longest channel [Figs. 6(b) and 6(c)
for θ ¼ 30.39°]. It is clearly seen that one-dimensional (1D)
electron channel appears near the surface. In fact, the
effective mass along the 1D channel is 0.34m0 whereas the
mass along the perpendicular direction is 71m0. By
changing the inclined angle θ, the width of the 1D channel
and its separation from the adjacent channels are controlled,
as is demonstrated in Fig. 6(d) for the case of θ ¼ 16.32°.
We have clarified that channel structure plays important

roles in the understanding of the band-gap variation in SiC
polytypes. This variation is not limited to SiC since CBMs
of most tetrahedrally bonded materials have a floating
nature [2]. The band-gap engineering through the control of
the nanoshapes of the interstitial channels becomes true
when syntheses of the polytypes in other materials are
realized.
In summary, we have found that the internal nanospace

plays a decisive role in determining the band gaps, the
effective masses, and then the electronic properties of
the covalent semiconductors. This is a consequence of the
floating nature of the conduction-band minima where the
wave functions are distributed along the interstitial channels
in the semiconductors. We have shown that the band-gap
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FIG. 5 (color online). Calculated CBM energy at several k
points as a function of reduced lattice constant a=a0 (a0: lattice
constant without pressure) in 3C-SiC (a) and in GaAs (c). The
corresponding pressures (GPa) at a=a0 ¼ 0, 0.95, 0.9, 0.85, 0.80,
and 0.75 are 0 (0), 31.0 (5.9), 73.7 (12.5), 128.7 (21.3), 202.6
(33.6), and 306.5 (51.5) in SiC (GaAs). (b) The kinetic-energy
contribution ϵkin ¼ hϕij −∇2=2jϕii to the orbital energy of each
Kohn-Sham (KS) state at the M point in 3C-SiC. The abscissa
represents the ith KS state from the valence-band bottom, and the
25th state is the CBM. (d) Contour plots of the KS orbital of the
CBM in GaAs at a ¼ 0.75a0. The gray and green balls represent
Ga and As atoms, respectively.
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FIG. 6 (color online). One-dimensional electron channel on the
inclined SiC surface (xylophone channel). (a) Schematic side
view of 5H-SiC near the inclined surface (the inclined angle θ) on
the (112̄0) plane. The five arrows represent channels with each
number discriminating the channel length. (b) and (d): Contour
plots on the (112̄0) plane of the CBMKS orbitals near the surface
with the inclined angle of θ ¼ 30.39° and θ ¼ 16.32°. (c) Top
view of the CBM KS orbitals as an isovalue surface at its value of
20% of the maximum value. Blue and green isovalue surfaces
represent the positive and negative signs of the KS orbital. White
and burgundy balls depict C and Si atoms, respectively.
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variation in various polytypes in SiC is quantitatively
explained in terms of the channel length. We have found
that the length and the direction of the interstitial channel
are the principal quantities to determine the anisotropic
effective masses, leading to the two-dimensional electron
and hole gases in heterocrystalline SiC and also to the one-
dimensional electron channel by the surface fabrication.
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