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By treating both the short-range (solvation) and long-range (image force) electrostatic forces as well as
charge polarization induced by these forces in a consistent manner, we obtain a simple theory for the self-
energy of an ion that is continuous across the interface. Along with nonelectrostatic contributions, our
theory enables a unified description of ions on both sides of the interface. Using intrinsic parameters of the
ions, we predict the specific ion effect on the interfacial affinity of halogen anions at the water-air interface,
and the strong adsorption of hydrophobic ions at the water-oil interface, in agreement with experiments and

atomistic simulations.
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The interfacial activities of salt ions are of great
importance in physical chemistry, colloidal science, and
biophysics [1]. Many interfacial phenomena, such as the
surface tension of the electrolyte solution [2], salt effects on
bubble coalescence [3], and the effectiveness of salts on the
stability of protein solutions and colloidal suspensions [4],
exhibit strong dependence on the chemical identity of the
ions. Although this “specific ion effect” has been known for
over a century [5], a systematic, unified, and predictive
theory remains an outstanding challenge. Current theories
are system dependent and require adjustable parameters to
force-fit experimental data [6—10].

A key factor that determines the ion distribution at the
dielectric interface and other interfacial properties is the
self-energy of a single ion [11]. The self-energy consists of
electrostatic and nonelectrostatic contributions, such as
cavity energy, hydration, and dispersion forces. While
the effects and the theoretical treatments of these non-
electrostatic contributions are still debatable [6], the con-
stituent components in the electrostatic self-energy have
become clear in recent years [12—14]. The problem is then
in the accurate and consistent treatment of the electrostatic
effects. Such a treatment is essential both because the
electrostatic part is a major component in the self-energy of
an ion, and because the relative importance of the non-
electrostatic contributions can only be evaluated when the
electrostatic contribution is treated accurately.

A major contribution in the electrostatic self energy is the
image interaction, whose treatment was pioneered by
Wagner, Onsager, and Samaras (WOS) [15]. The WOS
theory predicts depletion of ions from the water-air inter-
face due to the image charge repulsion and qualitatively
explains the increase of surface tension with the salt
concentration. However, this theory fails to capture the
initial decrease with salt concentration in the surface
tension known as the Jones-Ray effect [16], and the
systematic dependence on the identity of the ions [2]. A
major weakness in the WOS theory and its subsequent
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modifications is modeling the ion as a point charge, which
results in a discontinuous self-energy across the dielectric
interface. The self-energy diverges to positive infinity on
approaching the interface from the water side and to
negative infinity on approaching from the air(oil) side.
To avoid this unrealistic behavior, the ion distribution is
artificially restricted to lie only in the water phase, which
makes the theory inapplicable to hydrophobic ions and
liquid-liquid interfaces. This artificial cutoff also affects the
electrostatic potential gradient across the interface, which is
shown essential to the Jones-Ray effect [17].

Another important effect is the finite polarizability of the
ions. Simulation by Jungwirth and Tobias [18] showed that
the polarizability of ions is a key contribution to their
differential affinity to the interface. Levin and co-workers
[12—-14] developed a model of polarizable ions near a
dielectric interface that are able to explain several inter-
facial properties of aqueous electrolyte solutions. In their
model, charge polarization in the ion is included to
optimize the short-range Born energy. However, near a
dielectric interface, the long-range image force can be
sufficiently strong to contribute to charge polarization.
Furthermore, their model does not account for the image
force on the air(oil) side of the interface, thus making it
difficult to extend the theory to hydrophobic ions and
liquid-liquid interfaces.

In this Letter, we present a unified theory that treats all
the electrostatic contributions: the Born solvation energy,
the image charge interaction, and ion polarizability in a
single, consistent framework. Along with the relevant
nonelectrostatic contributions, we apply our theory to
air-water and liquid-liquid interfaces.

Electrostatic self-energy.—We consider a single ion in
the vicinity of a sharp interface, located at z = 0, between
two semi-infinite regions (; and N,) with respective
dielectric constant ¢; and &, (¢; > ¢&,). We take the
elementary charge e as the unit of charge, and kT as the
unit of energy. The ion is taken as a sphere of radius a
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centered at r., with charge distribution p(r,r.), which
satisfies [ drp(r,r.) = vy with vy the valency of the ion
(+ for the cation and — for the anion). The ion is
polarizable; therefore, the charge distribution will be
self-adjusted to the local dielectric environment.

The electrostatic self-energy u.; can be written as two
parts: U = Uiy + Upop, Where ujy accounts for the sum of
the Coulomb interactions in the constituent charges on the
ion and u,,, is the energy cost of charge polarization. u;y, is
given by

() =2ty [ dr [ deplrr )G e)pn). ()

where Iz = e?/4rney kT is the Bjerrum length in the
vacuum and &, is the vacuum permitivity. G(r,r’) is the
Green’s function: the electrostatic potential at r due to a
unit point charge at r’. It satisfies the Poisson equation —V -
[e(r)VG(r,1')] = 6(r —r’) . Depending on whether r and
r’ are in the same region, G(r,r’) is given by

1 Aa/i /
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aand ff can be either 1 or 2, and A3 = (&, — &5)/ (e, + £5)
is the dielectric contrast. r* = (x/,y’, —Z’) is the location of
the image of r’ with respect to the interface. The first term
on the right-hand side of Eq. (2) is the direct Coulomb
interaction and will generate the local Born solvation
energy upon integration over the charge distribution. The
last term in the first line of Eq. (2) is the image charge
interaction, which can be either positive or negative
depending on whether the point charge is located on the
high dielectric side or low dielectric side; thus, it either
enhances or counteracts the solvation energy effect.

In the point-charge model p(r,r.) =v,.5(r—r,),
Eq. (1) gives uj,(r.) = 27lgL2.G(r,, r.), which produces
divergences in both the local Born solvation energy and in
the image charge interaction as z. — 0 from either side of
the interface. The use of a finite charge distribution avoids
both types of divergences. Figure 1 shows the result for the
electrostatic self-energy, ug)), calculated for a nonpolariz-

able, uniform surface charge distribution on the ion (thus

0 . .
uil) = u;,). For comparison, we include the results from

the point-charge model, adjusted by the bulk Born energy

V2 13/2ae, on each side. While ué(l)) calculated by the two

models are consistent in the bulk region (|z.| > a), quali-
tative and dramatic differences are seen in the interfacial
region—the most relevant region for the interfacial activ-
ities of the ions. Interestingly, ugn for an ion located exactly
at the interface (z. = 0) is significantly lower than the mean

of the Born energy in two bulk regions, reflecting the

o —— —— — o ]

\
\
|
\

0 T T T
-10 -5 0 5 10

z [Angstrom]
FIG. 1 (color online). Electrostatic self-energy, ui?), of a
monovalent ion with uniform surface charge distribution, calcu-
lated by our model (solid line) and the point charge model
(dashed line). &; = 80, &, = 5, and a = 2 A.

asymmetry in the image force between the two dielec-
tric media.

Polarization of the ion allows the charge distribution to
self-adjust to its local dielectric environment, which
decreases u;,, relative to that for a fixed uniform charge
distribution. However, this redistribution incurs an energy
penalty up,. Levin [12] proposed a phenomenological
model for uy, by taking reference to the perfectly con-
ducting sphere and making a Landau type of symmetry
argument to describe this energy penalty. In our notation

upol is
_ ‘ 2
uPol(rc) = (7/(;1}}/7/> / dr [p(zorL) - 1:| s 3)

where y is the polarizability of the ion, yy(= a’) is the
polarizability of a perfectly conducting sphere of the same
radius as the ion [19], v is the volume of the ion, and p, is
the charge density for the uniform spherical distribution on
the ion surface. The form of the coefficient in Eq. (3) was so
constructed as to reproduce the known limiting behavior,
i.e., that it should be zero for the perfectly conducting
sphere and infinity for a nonpolarizable ion.

Putting together Eqs. (1) and (3), we obtain the general
expression for u, with arbitrary charge distribution on the
ion. The optimal distribution is then obtained from
Sug (r.)/8p(r,r.) = 0. To avoid the complexity of solving
the high dimensional integral equation from this condition,
we make a variational trial function for p(r, r.). We assume
that polarization apportions, respectively, f and 1 — f of the
total ionic charge (f € [0, 1]) uniformly to the two hemi-
spheres of the ion separated by the xy plane at z, i.e.,

2fpo(r)
p(r.r,) = {z(fo—rf)po(l‘)

for z > z,
for z < z,., @)
where py(r) = v 6(|r — r.| — a)/4xa? is the uniform sur-
face distribution on the sphere. The deviation of f from 1/2
measures the degree of polarization of the ionic charge.
Substituting the trial function Eq. (7) into Egs. (1) and (3),
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U (r.) can be simplified to a quadratic function of f, which
can be easily minimized to yield a position-dependent
charge fraction f(r,.). This optimal charge fraction f(r,) is
then used to evaluate u(r.). Since the electrostatic
interaction includes the local Born solvation energy and
the long-range image force, the resulting polarization
reflects the combined effects of these terms. Figure 2
shows the charge polarization and the electrostatic self-
energy of I~ (a;- =2.26 Ay =69 A%). In the imme-
diate vicinity of the interface (|z.| < a), I~ is highly
polarized. Charge polarization significantly lowers uy
compared with the nonpolarizable ion. Beyond the imme-
diate vicinity of the interface (|z.| > a), polarization is
driven by the long-range image force, and f decays to 1/2
as the ion approaches the bulk. While the effect of charge
polarization on u, is small on the high dielectric side
beyond z. = a, u, of the polarizable ion is appreciably
lower than the nonpolarizable ion on the low dielectric side
slightly beyond z, = —a, as a result of stronger and longer-
range image force in this region.

For comparison, in Fig. 2(b) we also include results from
Levin’s polarizable ion model [12]. u. in Levin’s theory
only extends to z. = —a, whereas our theory yields a
continuous u,; across the interface to the bulk air(oil) phase;
this will be important when there is appreciable ion
partition in the oil phase. In addition, u, on the low
dielectric side is significantly higher in our theory than
from Levin’s theory because the relocation of charge from
z < 0 to z > 0 changes the image force from attractive to
repulsive, which is not accounted for in Levin’s theory. The
difference becomes more pronounced with increasing
dielectric contrast.

The calculations so far concern only the electrostatic
contributions to the self-energy, which will not be affected
by the addition of nonelectrostatic effects. The total self-
energy of the ion is the sum of the electrostatic and
nonelectrostatic parts:

u(rc) = uel(rc) + Mne(rc)- &)
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FIG. 2 (color online). (a) Charge polarization f, and (b) electro-
static self-energy u,,, for I". For comparison, we include Levin’s
theory [12] and a nonpolarizable ion of the same radius as I~
(dashed line). &; = 80, &, = 5.

We now include the appropriate nonelectrostatic contribu-
tions to discuss the interfacial behavior of different ions at
the water-air and water-oil interfaces, respectively.

Water-air interface—For the nonelectrostatic self-
energy at the water-air interface, we take the simplest form
of cavity energy [12,20], which is the work required to
create a cavity for the ion where the water molecules are
excluded. It is given by [12,20]

xa’ .>a
uffe/a(rc): {"4&3(%—5—1)2(2—%) a>z.>-a, (6)
0 7, < —a

with k ~ 0.3 A= from bulk simulation [21]. "/ provides
the driving force for the ion to migrate from the bulk water
to the interface; this driving force is larger for larger ions.
The self-energy profile of the ion across the interface is
determined by the competition between the cavity energy
and the electrostatic self-energy, the former preferring the
ion to reside on the air side and the latter favoring it being
on the aqueous side.

Figure 3(a) shows u for four halogen anions and the
alkali-metal Na*. We use the Born radius 2.26, 2.05, 1.91,
1.46, and 1.80 A [22], and the polarizability 6.90, 4.53,
3.50,0.97, and 0.18 A® [18], respectively, for I-, Br—, CI-,
F~, and Na™. For the larger and more polarizable ions, such
as I~ and Br, the gain in cavity energy at the relatively low
cost of electrostatic self-energy leads to a local minimum at
the interface in the self-energy profile, which is consistent
with the result of MD simulation using a polarizable
potential model [23]. For small and less polarizable ions,
such as F~ and Na™, u is monotonic and increases rapidly
as the ion moves from the aqueous phase to air. Our theory
predicts a more repulsive u,, for these ions on the water side
than in Ref. [12], which has the same qualitative effect as
the hydration effect considered in Refs. [13,14] for pre-
dicting the surface tension. For more complex ions such as
103, explicit treatment of hydration may be necessary
[13,14]. However, the quantitative importance of hydration
needs to be reevaluated with our more accurate electrostatic
self-energy.
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FIG. 3 (color online). (a) Self-energy and (b) interfacial affinity
of F-, CI=, Br, I, and Na" at the water-air interface.
& = 80, &) = 1.
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The self-energy of an ion is closely related to the
concentration profile of the ions. While a full treatment
has to include the interaction between the ions, which leads
to screening of the image forces, we can obtain a qualitative
picture of the ion distribution by defining the interfacial
affinity as e~[“()=#()| to characterize the relative proba-
bility of finding the ion in the interfacial region to the bulk.
In Fig. 3(b), we show the interfacial affinity for the halogen
anions and Na™. It is clear that our theory captures the
known specific ion effect, which follows precisely the
reverse Hofmeister series: I~ > Br— > ClI~ > F~ [2,5].
The local peak in the interfacial affinity of I~ and Br™ ions
is consistent with results of electron spectroscopy experi-
ments [24] and computer simulations using polarizable fields
[18]. In addition, the interfacial affinity of halogen anions is
larger than that of Na*, from which we expect local charge
separation and an induced electrical double layer at the
interface in a NaX solution, with the halogen anions
accumulating right around the location of the interface and
the Na™ ions next to it on the water side. The electrostatic
potential gradient due to charge separation has been shown to
be key to explaining the Jones-Ray effect [17].

Water-oil interface.—With a continuous self-energy, our
theory naturally applies to the liquid-liquid interface. In
addition to cavity energy, dispersion forces have been
suggested to be an important contribution to the non-
electrostatic self-energy at the water-oil interface [6,7,14].
These nonelectrostatic contributions set a chemical poten-
tial difference between the two bulk phases in addition to
the Born energy difference. Phenomenologically, these
nonelectrostatic effects can be captured by a single param-
eter B with a crossover in the interfacial region that can be
approximated by the interpolation scheme proposed by
Levin and co-workers [12—-14]. Similar to Eq. (6), we may
write the nonelectrostatic self-energy in the form

B .24
wl’(r) = EE4+122-%) a>ze2-a. ()
0

7, < —a

Restricting our consideration to cavity energy and
dispersion force, and taking the reference energy to be 0
in the bulk oil, B = v" — v° + A (y/70)[14], where v" is
the cavity energy in water, which scales with the cavity
volume for small cavity sizes (a < 4 A) and with the
surface area for larger cavities [20]. v is the cavity energy
in oil, which is primarily due to the surface energy between
the ion and oil [25,26]. A is the effective Hamaker
constant for the water-oil interface, estimated to be about
4 KT [14] for a typical oil-water system. Alternatively, we
can treat B as an adjustable parameter from the bulk
partitioning of the ions between water and oil.

We defer a more general study of ions at the water-oil
interface to a future study. Here we consider a special case
of hydrophobic ions. Schlossman and co-workers observed
strong adsorption of hydrophobic ions at the water-oil
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FIG. 4 (color online). (a) Self energy and (b) interfacial affinity
of a hydrophobic ion at the water-oil interface relative to the bulk
oil. The dashed line shows the results calculated by the non-
electrostatic contribution alone. a = 5 A, v/vo = 0.5, & = 80,
and &, = 5. B =33 kT [27].

interface by x-ray reflectivity [9], from which it is inferred
that there is an attractive well for the self-energy on the oil
side. However, no explanation has been given to the origin
of this attractive well. Within our theory, this phenomenon
can be easily understood as arising from the long-range
image charge attraction of the hydrophobic ions in the low-
dielectric oil phase. Figure 4 shows the self-energy and
interfacial affinity of a hydrophobic ion calculated by our
theory with B = 33 kT, estimated using A, = 4 kT, sur-
face tension of water and surface tension of the oil used in
the experiment [27]. As the ion approaches the interface
from the oil side, u decreases because of the image charge
attraction, and then increases rapidly due to the unfavorable
contact with the aqueous environment. The peak in the
interfacial activity on the oil side of the interface corre-
sponds to minimum in the self-energy with depth of about
5.8 kT, in good agreement with the experimental results [9].
We note that although the choice of B will affect bulk
partitioning of the ions, the depth of the attractive well is
quite insensitive to the precise numerical value as long as B
is large enough to ensure hydrophobicity of the ion. This
clearly demonstrates the electrostatic origin of the strong
adsorption of hydrophobic ions on the oil side of the
interface, as the nonelectrostatic contributions (as depicted
by the dashed line) do not contain an attractive well.

In conclusion, by treating both the short-range (solva-
tion) and long-range (image force) electrostatic forces as
well as charge polarization induced by these forces in a
consistent manner, we obtain a simple continuous electro-
static self-energy across the interface, making it applicable
to both water-air and liquid-liquid interfaces. A systematic
and accurate treatment of the electrostatic self-energy is
essential for evaluating the relative importance of the
nonelectrostatic contributions. Combining the electrostatic
self-energy with existing models for nonelectrostatic con-
tributions, we are able to explain a number of interfacial
specific ion effects using the intrinsic parameters of the ion,
such as the valency, radius, and polarizability. The self-
energy model developed here provides the essential
ingredient in a complete theory to treat ions at finite
concentration, via, e.g., the weak coupling theory [28] or
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modified Poisson-Boltzmann theory [29], to describe the
phenomena mentioned in the beginning of this Letter.
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