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We study the interaction of relativistic electron-vortex beams (EVBs) with laser light. Exact analytical
solutions for this problem are obtained by employing the Dirac-Volkov wave functions to describe the
(monoenergetic) distribution of the electrons in vortex beams with well-defined orbital angular momentum.
Our new solutions explicitly show that the orbital angular momentum components of the laser field
couple to the total angular momentum of the electrons. When the field is switched off, it is shown that the
laser-driven EVB coincides with the field-free EVB as reported by Bliokh et al. [Phys. Rev. Lett. 107,
174802 (2011)]. Moreover, we calculate the probability density for finding an electron in the beam profile
and demonstrate that the center of the beam is shifted with respect to the center of the field-free EVB.
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Introduction.—In the beginning of the 1920s, Uhlenbeck
and Goudsmit introduced the concept that electrons possess
a spin angular momentum (SAM) of magnitude ℏ=2, in
units of Planck’s famous constant h ¼ 2πℏ, a fundamental
degree of freedom for quantum particles with no classical
analogue [1]. Since then the properties of the electron spin
and its influence upon different elementary and complex
processes have been studied extensively, both in theory [2]
and in experiments [3].
Apart from the spin degree of freedom, Bliokh and

co-workers [4] have shown that electron beams may carry
also a nonzero orbital angular momentum (OAM) along
their axis of propagation. During recent years, such
electron-vortex beams (EVBs) [5,6] with an OAM projec-
tion of up to 200ℏ and energy∼200–300 keV [7] have been
produced and applied, for instance, to enhance the reso-
lution in studying magnetic and biological materials [8] and
to further explore the scattering of electrons [9]. Moreover,
Bliokh et al. have demonstrated that both the SAM and the
OAM of the electron give rise to an intrinsic spin-orbit
interaction (SOI) in free EVBs [4]. The concept of intrinsic
SOI stems from light beams [10,11], commonly known
as either “twisted photons” or “optical vortices” that are
widely investigated in the literature [12–14].
In this Letter, we study how the intrinsic SOI of the EVB

is modified within a linearly polarized, few-cycle laser
pulse. To achieve this, we generalized the field-free solu-
tions of the EVB as reported in Ref. [4] for (electron) vortex
beams in the field of a linearly polarized laser. Based on
these generalized solutions, we demonstrate the shift of
the center of the field-affected EVB with respect to the
center of the field-free EVB. We also show that a non-
zero probability can remain for finding an electron at the

center of the initially (field-)free beam due to the
electron-laser coupling. Below, we use relativistic
Gaussian units c ¼ 1, ℏ ¼ 1 and write the scalar product
of any two four-vectors a ¼ ða0; aÞ and b ¼ ðb0; bÞ as
ðabÞ≡ aμbμ ≡ a0b0 − a · b, where μ ∈ f0; 1; 2; 3g.
EVB from the Dirac-Volkov solution.—We consider an

electron with mass m that moves in the field of a plane-
wave laser with a wave four-vector kμ ¼ ðω; kÞ and the
dispersion relation k2 ¼ 0. For such an electromagnetic
field, the four-potential only depends on the scalar product
of kμ and the four-coordinate xμ ¼ ðt; rÞ, namely Aμ ¼
AμðζÞwith ζ ≡ ðkxÞ ¼ ωt − k · r being the laser phase, and
satisfies the Lorenz gauge condition ðkAÞ ¼ 0 [15]. The
Dirac equation of an electron that is coupled to an external
electromagnetic field is given by [15]

½ðp̂ − eAÞ2 −m2 − ieFμνσ
μν=2�ψ ¼ 0; (1)

where p̂μ ¼ ði∂t;−i∇Þ is the electron four-momentum
operator, e ¼ −jej is the electron charge, Fμν ¼∂μAν − ∂νAμ is the electromagnetic field tensor,
2σμν ¼ γμγν − γνγμ, where γμ are the 4 × 4 Dirac matrices.
For a plane-wave field A, the exact solution of Eq. (1) is
known to have the (so-called) Dirac-Volkov form [15]

ψpðxÞ ¼
�
1þ e

2ðkpÞ ðγkÞðγAÞ
�

upffiffiffiffiffiffi
2E

p eiS: (2)

Here the electron four-momentum and the mass are
related via the (standard) energy-momentum relation p2 ¼
E2 − p2 ¼ m2 where E and p are the energy and the
momentum of the electron, respectively. The exponent
S ¼ −ðpxÞ − F þ G, with
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F ≡
Z

ζ

0

dζ0
eðpAðζ0ÞÞ

ðkpÞ ; G≡
Z

ζ

0

dζ0
e2A2ðζ0Þ
2ðkpÞ ; (3)

is proportional to the classical action of an electron within
a plane-wave electromagnetic field [16]. Moreover, the
bispinors up are the positive energy-momentum eigenstates
of the free Dirac equation that describe both the spin-up and
spin-down polarized states. These spin states of an electron
are chosen to be the eigenstates ws ¼ ðα; βÞT of the σz
operator with eigenvalues s ¼ �1=2 as also considered in
Ref. [4] and in contrast to Ref. [17] where the basis states
of polarization are chosen to be the helicity eigenstates of
σ · p=ð2pÞ. Our particular choice of the basis states for the
spin is natural for massive particles [4,10].
An EVB is defined as a (twisted) state with a well-

defined energy E0, longitudinal momentum p∥0, absolute
value of the transverse momentum p⊥0, and the (quantized)
projection l of the OAM on the electron propagation axis
[see, e.g., Refs. [4,17]]. EVBs exhibit a particular phase
structure that is incorporated by the (vortex) phase factor
eilϕ in the “spectrum” of the Bessel beam

~ψlðpÞ ¼ δðp⊥ − p⊥0Þ
eilϕ

2πilp⊥0

; (4)

where ϕ ∈ ½0; 2πÞ is the azimuthal angle. Equation (4)
means that the electron has a monoenergetic distribution
of the momentum over some cone with slant length
p0 ¼ const. and fixed polar (opening) angle θ0 with regard
to the propagation axis of the beam [cf. Fig. 1, blue sketch].
The opening angle of this cone is defined asp∥0 ¼ p0 cos θ0
and p⊥0 ¼ p0 sin θ0. Using cylindrical coordinates in
momentum space, p ¼ ðp⊥;ϕ; p∥Þ ¼ ðp sin θ;ϕ; p cos θÞ,
we construct theVolkov-Bessel states from theDirac-Volkov
solutions, Eq. (2), as

ΨlðxÞ ¼
Z

~ψlðpÞψpðxÞp⊥dp⊥dϕ; (5)

with the distribution of momentum given by Eq. (4).
To evaluate the integral Eq. (5), we apply here cylindrical

coordinates r ¼ ðr;φ; zÞ in real space and restrict ourselves
to a “head-on” scenario, in which the electrons and the
linearly polarized photons propagate antiparallel to each
other [cf. Fig. 1]. For this geometry, we choose the z axis

directed along the propagation of the electrons which
implies that the laser propagates backward along z:
ζ ¼ ωtþ kz. We also choose y to be the polarization axis
of photons, i.e., Aμ ¼ ð0; 0; AðζÞ; 0Þ, where—for the
moment—we do not specify the shape of AðζÞ. For this
linearly polarized field, the exponent F [cf. Eq. (3)]
contributes into the dynamics of the EVB via the p⊥-
and ϕ-dependent term p⊥A sinϕ. Whereas, the exponent G
is independent of both p⊥ and ϕ, since its denominator
ðkpÞ ¼ ωE þ kp∥. Furthermore, we make use of the ϕ
dependence of F and employ the Jacobi-Anger expansion
eifsinϕ¼Pþ∞

n¼−∞JnðfÞeinϕ, where f≡R ζ
0 dζ

0ep⊥Aðζ0Þ=
ðkpÞ. Straightforward integration of Eq. (5) leads us to
the following exact form of the Volkov-Bessel state:

Ψlðr; tÞ ¼
�
1þ e

2ðkp0Þ
ðγkÞðγAÞ

� Xþ∞

n¼−∞
inJnðf0Þψlþnðr; tÞ;

(6)

where f0 ≡ fðp0Þ, and ξ≡ p⊥0r is the dimensionless
transverse coordinate that defines the width of the EVB.
Here the states

ψlþnðr; tÞ ¼
eiΦffiffiffi
2

p

2
64
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

E0

q
ws

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − m

E0

q
σzws cos θ0

1
CAeiðlþnÞφJlþnðξÞ

þ

0
B@

0

0

A

1
CAeiðlþnþ1ÞφJlþnþ1ðξÞ

−
0
B@

0

0

B

1
CAeiðlþn−1ÞφJlþn−1ðξÞ

3
75; (7)

with a phase Φðz; tÞ≡ p∥0z − E0tþ Gðp0Þ and spinors
A≡ ð0; i ffiffiffiffi

Δ
p

αÞT and B≡ ði ffiffiffiffi
Δ

p
β; 0ÞT , look like the

Bessel-type solution of the free Dirac equation, but with
some modified OAM lþ n, and where l is the OAM of the
(initially) field-free EVB [4]. This modified OAM arises
naturally due to the coupling between the phase factors
einϕ and eilϕ. Such a coupling enables one to interpret n
as an additional OAM due to the laser. Moreover, the
state [Eq. (6)] represents a superposition of infinitely many
modes Jlþn and Jlþn�1 (for a given l), similar to the
expression of plane waves as an infinite sum of spherical
harmonics.
The presence of both the nonzero SAM and OAM of the

electron gives rise to the so-called intrinsic SOI for the EVB
[4]. Equation (7) shows that the coupling between the spin
and angular momentum degrees of freedom is described
via the modes Jlþn�1 which appear with the coefficients
ð0; 0;AÞT and ð0; 0;BÞT . These coefficients, in turn, are
proportional to

ffiffiffiffi
Δ

p
, where Δ ¼ ð1 −m=E0Þsin2θ0 < 1 is

FIG. 1 (color online). Geometry of head-on collision of a
relativistic EVB (with a momentum distribution indicated in blue)
and linearly polarized, few-cycle laser pulse (red waveform).
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the intrinsic SOI parameter and is nonzero both in non-
paraxial (θ0 ≠ 0) and relativistic regimes. Whereas, in
paraxial (θ0 → 0) and/or in nonrelativistic (p0 → 0) limits
this parameter vanishes and, therefore, the “scalar” mode
Jlþn remains as the only contributing term in the Volkov-
Bessel states [Eqs. (6) and (7)].
It is very important to note that when we switch off the

laser field, i.e., A ¼ 0 and n ¼ 0, we recover the results
known for the field-free EVB [4,18]. On the other hand,
we obtain the Dirac-Volkov solution (2) from Eqs. (6) and
(7) if we consider the plane-wave limit θ0 ¼ 0 and l ¼ 0
for the electron, as one would expect.
Probability density of EVBs.—We can analyze the

probability density of the EVB by using the Volkov-
Bessel states [Eqs. (6) and (7)] to better understand how
a linearly polarized laser field affects an EVB with a given
energy in both nonparaxial (Δ < 1) and paraxial (Δ → 0)
regimes. For this, we have to use the 0th component of the
four-current jμ ¼ Ψ†

lγ
0γμΨl [15] and evaluate

ρls ¼
Xþ∞

n;n0¼−∞
Jnðf0ÞJn0 ðf0Þ

�
cos

�
ðn0 − nÞ

�
π

2
þ φ

��

×

��
1 − δ2

2

�
ϱlsnn0 − p∥0δ

2

2E0

JlþnJlþn0

�
þ δ

p⊥0

E0

× cos ½2sðn0 − nÞðπ=2þ φÞ þ φ�JlþnJlþn0þ2s

�
: (8)

Here δ≡ ωeA=ðkp0Þ is a dimensionless parameter which
shows how strong or weak the laser is. Moreover,

ϱlsnn0 ≡
�
1 − Δ

2

�
JlþnJlþn0 þ

Δ
2
Jlþnþ2sJlþn0þ2s (9)

looks like the probability density of the field-free EVB,
again with modified OAMs lþ n and lþ n0. Here and in
the curly brackets of Eq. (8), we omitted the argument ξ of
Bessel functions, for the sake of clarity.
In our further discussion, we are interested in describing

the profile of the field-affected EVB for a relatively weak
laser with jδj ≪ 1. We can therefore simplify the proba-
bility density to

ρls ≈
Xþ∞

n;n0¼−∞
Jnðf0ÞJn0 ðf0Þ cos

�
ðn0 − nÞ

�
π

2
þ φ

��
ϱlsnn0 ;

(10)

that possesses a mirror-reflection symmetry with respect to
the y axis, i.e., ρlsðxÞ ¼ ρlsð−xÞ. This symmetry can be
easily proved if we make the replacement φ → π − φ in
Eq. (10), quite similar to the profile of laser-driven twisted
atoms [19]. The form, Eq. (10), can be constructed also
from the Volkov-Bessel states, Eqs. (6) and (7), if we
approximate them via

Ψlðr; tÞ ≈
Xþ∞

n¼−∞
~Ψlþn; ~Ψlþn ≡ inJnðf0Þψlþn: (11)

The latter expression is important for finding an “integral
of motion” of laser-driven EVBs. Indeed, ~Ψlþn are the
eigenstates of the z component of the “total” angular
momentum (TAM) operator T̂ z ≡ L̂z þ Σ̂z, where L̂z ¼−i∂=∂φ is the OAM operator and Σz ¼ 1=2diagðσz; σzÞ
represents the SAMoperator of the electron.The correspond-
ing eigenvalues of the TAM operator will then be lþ nþ s,
i.e., T̂ z

~Ψlþn ¼ ðlþ nþ sÞ ~Ψlþn. When we switch off
the laser field we get ðL̂z þ Σ̂zÞψl ¼ ðlþ sÞψl [4].
To investigate the spatiotemporal characteristics of the

EVB profile we shall here specify the shape of the four-
potential Aμ. To this end, we examine a few-cycle Gaussian
pulse A ¼ A0e−ζ

2=a2 cos ζ [cf. Fig. 1], where A0 is the
constant amplitude of the potential and a is the (dimen-
sionless) waist size of the laser beam. For this specific
waveform, f0 can be exactly integrated and expressed by
means of so-called Gauss error functions. Furthermore, to
fulfill the condition jδj ≪ 1, we consider a laser pulse with
the electric field amplitude E ¼ 108 V=cm, central angular
frequency ω ¼ 1016 Hz, and the waist size a ¼ 9, corre-
sponding to the pulse duration τ ≈ 5.5 fs, number of cycles
N ≈ 5 and the intensity I ≈ 1.3 × 1013 W=cm2 (cf. e.g.,
Ref. [20]). We also consider an EVB in the nonparaxial
regime with the OAM l ¼ 3, the opening angle θ0 ¼ π=4,
and the kinetic energy 817.4 keV corresponding to the
intrinsic SOI parameter Δ ¼ 0.3 [4]. For these values,
jδj≲ 10−4 and, therefore, we can replace in very good
approximation the expression Eq. (8) by the simpler form,
Eq. (10). Moreover, the terms with the laser OAM greater
than n ¼ n0 ¼ 7 no longer contribute in Eqs. (8)–(10).
After we have chosen the parameters of the

“EVBþ laser” system we return to the “head-on” scenario,
in which the free EVB propagates along the positive
direction of z and collides with the laser pulse, localized
both in z and in time t [cf. Fig. 1]. For this collision,
we choose the initial condition such that the laser pulse
is switched on at t ¼ 0 in the transverse xy plane at
z0 ¼ −1100 nm. This means that at t ≤ 0, the EVB is
described by means of the field-free state [4] [cf. Fig. 2(a)].
After the pulse passes the plane z0, the EVB still remains
field affected within the next ∼1.4 femtoseconds. This
period, in principle, is enough in order to reveal the
influence of the field on the dynamics of the EVB profile.
Figure 2 displays both the spin- and the azimuthal-
dependent probability density of the EVB and its snapshot
as a function of the dimensionless transverse coordinate ξ
for selected time intervals. The dependence on the spin can
be clearly seen in all figures due to the nonparaxiality of the
relativistic EVB propagation, i.e., as a result of the intrinsic
SOI in the EVB both in the presence and absence of the
laser. The dependence of the probability density on the
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azimuthal angle manifests itself in the profile of the EVB
due to the electron-laser coupling [cf. Figs. 2(b)–(d) and
Eq. (10)]. This φ dependence is incorporated via the shift
of the center of the EVB with respect to the center of the
(initially) field-free EVB both along the positive [Fig. 2(b)]
and negative [Figs. 2(c) and 2(d)] directions of the y axis.
For t ¼ 6 fs, the numerical estimate of this shift gives
∼0.009 nm which is the 19.9% of the beam width ℏξ0=p⊥0,
where ξ0 ¼ 20. Moreover, such a shift causes a nonzero
probability for finding an electron at the center of the
initially field-free beam [cf. Figs. 2(c) and 2(d)]. Finally, at
t ¼ 6.9 fs the EVB evolves back to the field-free EVB and,
therefore, obtains the same distribution of the probability
density as for t ¼ 0 fs [Fig. 2(a)].
Until now, we have discussed only how the laser pulse

affects the dynamics of the relativistic EVB in the non-
paraxial regime. Since the first EVBs [7,21] have been
constructed for electrons with energies ∼200–300 keV and

opening angles θ0 ≤ 20 mrad, which are within the para-
xial regime, we find desirable also to discuss the influence
of the laser field onto the EVB dynamics for these—
nowadays available—experimental parameters. We again
examine the “head-on” scenario for electron and laser beams.
If we consider an EVB with the OAM l ¼ 3, opening angle
θ0 ¼ 20 mradand thekinetic energy300keV, corresponding
to the SOI parameter Δ ¼ 0.0015, and the few-cycle laser
pulse with the same parameters as taken before, the prob-
ability density of the EVB is no longer spin dependent
(Fig. 3). However, the presence of the field gives rise to a
shift of the center of the EVB with respect to the center of
the initially free paraxial beam [cf. Figs. 3(a) and 3(d)].
For t ¼ 5.5 fs, this shift is∼0.02 nmwhich is the 20% of the
full width at half maximum diameter of the EVB [22], thus
making it accessible for measurement.
The relativistic EVB as a whole is spatially shifted along

the (linear) polarization direction of the laser field, while
the overall transverse structure of the (shifted) beam
remains the same. Since the field oscillates in our case
on a subfemtosecond time scale, the spatial shift of the
beam center performs oscillations with a similar frequency.
Additional computations show that these oscillations occur
for all values of the (longitudinal) OAM l and vanish only
in the plane-wave limit l ¼ 0 and θ0 ¼ 0. Furthermore, the
interaction with the laser pulse may lead to a pronounced
probability to detect electrons at the (initially dark) center
of the incident EVB [as seen at ξ ¼ 0 in Figs. 2(c) and 2(d)
and Fig. 3(c)]. Altogether, such a behavior of the beam
can be interpreted classically: the EVB experiences the
“standard” Lorentz force F ¼ eðEþ v × BÞ caused by a
laser field, where v is the electron velocity, E ¼ −∂A=∂t
and B ¼ ∇ × A are the corresponding electric and mag-
netic fields. As a consequence of this Lorentz-like behavior,
one can control and manipulate EVBs with all the exper-
imental techniques which have been developed over the
years for other kinds of (localized) electron beams.
In conclusion, we have examined a head-on collision

of two feasible beams, namely the relativistic EVB and
the few-cycle laser pulse. In our formalism, we have

FIG. 2 (color online). Spin-, time- and azimuthal-dependent
distributions of the probability density of a nonparaxial EVB
(in arbitrary units of the same scale). The s ¼ �1=2 spin states
are indicated by “þ” (solid curves) and “–” (dashed curves),
respectively. The snapshots of the EVB profiles are shown by the
variation of colors from black to white within the “sunset” scale
where black and white correspond to the minimum and maximum
values of the probability density, respectively.

FIG. 3 (color online). Time- and azimuthal-dependent distri-
bution of the probability density of a paraxial EVB (in arbitrary
units of the same scale). The variation of colors in snapshots is the
same as for Fig. 2.
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generalized the free EVB states [4] to the laser-driven
Volkov-Bessel states [Eq. (6)]. We have shown the shift of
the center of the laser-driven EVB with respect to the center
of the initially field-free EVB both in nonparaxial and
paraxial cases. This shift is unavoidably accompanied with
an azimuthal dependence of the electronic probability
density distribution and can be an important observable
that manifests itself in the interaction of the twisted
electrons with laser pulses. We believe that recent advances
in electron microscopy [8,23] will enable one to observe
the above introduced effect by employing, for instance, the
so-called pump-probe experiments.
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