
Inverse Problem of Capillary Filling

Emanuel Elizalde,1 Raúl Urteaga,1,* Roberto R. Koropecki,1 and Claudio L. A. Berli2
1IFIS Litoral (UNL-CONICET), 3000 Santa Fe, Argentina

2INTEC (UNL-CONICET), 3000 Santa Fe, Argentina
(Received 12 December 2013; published 4 April 2014)

The inverse problem of capillary filling, as defined in this work, consists in determining the capillary
radius profile from experimental data of the meniscus position l as a function of time t. This problem is
central in diverse applications, such as the characterization of nanopore arrays or the design of passive
transport in microfluidics; it is mathematically ill posed and has multiple solutions; i.e., capillaries with
different geometries may produce the same imbibition kinematics. Here a suitable approach is proposed to
solve this problem, which is based on measuring the imbibition kinematics in both tube directions.
Capillary filling experiments to validate the calculation were made in a wide range of length scales:
glass capillaries with a radius of around 150 μm and anodized alumina membranes with a pores radius of
around 30 nm were used. The proposed method was successful in identifying the radius profile in both
systems. Fundamental aspects also emerge in this study, notably the fact that the lðtÞ ∝ t1=2 kinematics
(Lucas-Washburn relation) is not exclusive of uniform cross-sectional capillaries.
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Though capillary-driven imbibition of micro- and nano-
tubes has been well documented over the past century [1],
the topic is experiencing a renaissance at present. This is
because capillarity phenomena enter a wide variety of
systems that range from living organisms to lab-on-a-chip
devices. Several fundamental and practical aspects of the
phenomena are currently being discussed in the literature,
such as the effects of inertia [2,3], wall roughness [4],
contact angle [5], and strong confinements [6]. In particu-
lar, here we deal with the capillary filling of tubes with
nonuniform cross sections, in the fluid dynamic regime
where the fluid kinematics is controlled by viscous dis-
sipation [2,3]. Thus, if inertial and gravity effects are
neglected, the meniscus velocity u ¼ dl=dt, where l is
the meniscus position and t is time, is given by

uðlÞ ¼ γ cosðθÞ
4μrðlÞ3 R l

0 rðxÞ−4dx
: (1)

In this expression, x is the axial coordinate along the tube,
rðxÞ is the axially dependent tube radius, μ is the fluid
dynamic viscosity, γ is the air-liquid surface tension, and θ
is the equilibrium contact angle made by the liquid with the
solid. The case of ideal surfaces is considered, with smooth
radius variations and homogeneous properties along the
tube, so that the variation of the contact angle is negligible
in relation to the equilibrium one. Equation (1) derives from
the balance between the Laplace driving force and the
viscous resistance in capillaries of a circular cross section,
and it has been used by several authors to predict the
instantaneous position of the meniscus, given a function
rðxÞ specified beforehand [7–10]. That procedure may be
designated a direct, or forward, calculation. In fact, in the

context of Eq. (1), the inverse problem consists in deter-
mining a completely unknown function rðxÞ from the curve
of experimental data uðxÞ. This possibility has not been
discussed in the literature before, and it is the objective of
the present work.
It is worth noting here that extracting rðxÞ from Eq. (1)

is an ill-posed problem, meaning that it has multiple
solutions. This may appear rather trivial from the viewpoint
of mathematics; however, it represents a novelty in the
physics of fluids: capillaries with different geometries may
have the same lðtÞ curve, including the well-known relation
lðtÞ ∝ t1=2, i.e., Lucas-Washburn (LW) result [11,12],
which has been invariably associated with uniform capil-
laries. Apart from the fundamental aspect, solving the
inverse problem of Eq. (1) involves several potential
applications, for example, in the design of capillary pumps
for microfluidic systems, where the liquid handling is
encoded in the geometric design of microchannels [13].
On the other hand, determining rðxÞ from the kinematics of
capillary filling offers the possibility to characterize the
inner geometry of nanopores in a nondestructive manner
(the detailed internal structure of nanochannels is still
inaccessible to ordinary techniques used in nanotechnology
laboratories). This is of great interest in the case of
nanoporous substrates, which are produced for a number
of applications, for instance, in optofluidic microsystems
[14]. In any case, solving the inverse problem of Eq. (1)
presents several difficulties, as we discuss below.
Equation (1) can be converted into a differential equation

by using the Leibnitz rule, which yields

d
dl

½rðlÞuðlÞ1=3� ¼ − 4uðlÞ4=3
3α

; (2)
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where α ¼ γ cosðθÞ=μ is a coefficient that characterizes
fluid properties, and can be assumed as a constant for a
given temperature. Integrating Eq. (2) leads to an explicit
expression of the unknown function rðlÞ,

rðlÞ ¼ ½rðl0Þuðl0Þ1=3 þ
4

3α

Z
l0

l
uðlÞ4=3dl�uðlÞ−1=3; (3)

where l0 is an arbitrary limit of integration. The multiplicity
of solutions of Eq. (3) is illustrated in Fig. 1. If one
introduces uðlÞ as the meniscus velocity corresponding to a
cylindrical capillary of radius R, that is, from the curve lðtÞ
corresponding to the LW result [Fig. 1(a)], then Eq. (3)
yields an infinite family of curves rðxÞ parametrized by
rðl0Þ, as shown in Fig. 1(b).
From the physical point of view, a remarkable feature

here is that any of the tube profiles rðxÞ plotted in Fig. 1(b),
when imbibed by capillary action, produce the curve lðtÞ
plotted in Fig. 1(a), which in this example corresponds to
the LW dynamics for cylindrical tubes. It means that, in
doing the direct calculation with Eq. (1), there are several
capillary geometries that produce the same meniscus
velocity uðlÞ.
Concerning the inverse problem, it is evident that

identifying the right rðxÞ solution among the parametrized
family of curves demands additional information from the
problem. One needs to know rðl0Þ or any single datum
other than the curve uðlÞ, for example, the total tube
volume. Previous knowledge of symmetric variations of the
tube profile is also useful for this purpose. Actually, in
Eq. (3), rðl0Þ is the boundary condition required to confer
uniqueness to the solution. In this regard, choosing l0 ¼ L

is the most appropriate option to compute the integral in
Eq. (3), provided the ending radius rðLÞ could be mea-
sured. Nevertheless, this calculation procedure propagates
the inaccuracy of rðLÞ to the entire solution rðxÞ.
Alternatively, here we propose a different strategy that

avoids the necessity of knowing the radius at any position.
It takes advantage of the possibility to measure capillary
filling in both tube directions: from x ¼ 0 to L, and from
x ¼ L to 0. The second measurement, when processed
through Eq. (3), generates a new family of rðxÞ curves,
where one of them must reproduce the meniscus velocity of
the first measurement. Thus, the procedure allows one to
identify the right function rðxÞ that represents the tube
geometry. It is worth adding that, since this method
produces two solutions, the inverse problem is now over-
determined. Nevertheless, cross-checking the two indepen-
dent solutions also serves as a consistency test for
the model.
In order to validate this approach, experiments of

capillary filling were made in a wide range of length
scales. Two different systems were used: a glass capillary of
radius around 150 μm and an anodized alumina membrane
with straight, noninterconnected, monodisperse pores of
radius around 30 nm, with both ends open to the atmos-
phere. In the first case, the radius profile rðxÞ can be readily
determined by optical methods, which is useful to contrast
with theoretical calculations. In the second case, rðxÞ is
unknown and the experiment serves to demonstrate the
method utility.
Next, the solution of the inverse problem in the glass

capillary is discussed. The nonuniform cross-sectional tube
was fabricated in our lab by heating and pulling a glass
capillary. Neither the load at the capillary end nor the local
heating were uniform, so as to produce a smooth variation
of the tube radius along the capillary [Fig. 2(b)]. The
resulting radius profile was determined by photography
image analysis [Fig. 2(d), black curve]. A glycerol–2-
propanol mixture was employed, with the viscosity tuned to
fill the 5 cm length capillary in about 10 min. The meniscus
position was followed by using a CCD camera [9,15,16];
images were recorded at the rate of three pictures per
second. Before each run, the capillary was systematically
washed with water, acetone, and 2-propanol, and then dried
in an oven. Experiments were made at room temperature.
The time variations of the meniscus position obtained in
typical runs are plotted in Fig. 2(c).
In the following we will use the red color to identify the

filling process in the left-to-right direction [red curve in
Fig. 2(c)] and the blue color to the filling process in the
opposite direction [dashed blue curve in Fig. 2(c)]. The
velocities uðlÞ in both directions were obtained by numeri-
cal differentiation of the curves l versus t using local
quadratic regression. Taking uðlÞ from the red data, and
using Eq. (3) with arbitrary rðLÞ values, yields a family of
possible solutions for rðxÞ. With these functions, the
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FIG. 1 (color online). (a) Relative meniscus position as a
function of normalized time for a capillary tube of uniform
radius R and length L; tfill ¼ 2L2=ðαRÞ is the filling time.
(b) Functions rðxÞ obtained from Eq. (3) with uðlÞ calculated
from data lðtÞ on the left, for different values of rðl0Þ. (c) Fluid
volume fraction related to the meniscus position as a function of
normalized time for a capillary tube of uniform radius R and
length L. (d) Functions rðxÞ obtained from Eq. (4) with QðvÞ
calculated from data vðtÞ on the left, for different values of rðv0Þ.
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expected blue filling data are simulated by using Eq. (1).
The simulated l versus t curves are compared to the
measured blue curve, to identify the right rðxÞ function
by the minimum least-squares fit. The rðxÞ solution thus
obtained is plotted in Fig. 2(d) (red curve). The whole
procedure is then repeated starting with the blue l versus t
curve [Fig. 2(c)], which produces the blue rðxÞ curve in
Fig. 2(d). All calculations were made by using α ¼ 0.18 m.
The shaded area in Fig. 2(d) was obtained by propagating
the uncertainties of the experimental data from five
measurements in each direction, by using Monte Carlo
simulations of synthetic data sets [17].
It is relevant to note that the overlapping of the two

obtained solutions shows the consistency of the calculation

procedure. Furthermore, the close agreement of these
solutions with the experimentally measured rðxÞ data
[black curve, Fig. 2(d)] indicates that the fluid dynamic
model used is appropriate.
The imbibition process can be experimentally assessed

by using other techniques, apart from the one described
above to capture the instantaneous position of the menis-
cus. In fact, particularly for nanoporous matrices, it is usual
to measure the amount of imbibed fluid as a function of
time by using gravimetric methods [18], neutron absorption
[19], reflected light interference [10,20], or simply by
geometric measurement of the imbibed volume [21]. To
take into account these possibilities, we extend the model to
the case where experimental data are proportional to the
volume of imbibed fluid vðlÞ. Introducing dvðxÞ ¼
πrðxÞ2dx into Eq. (1) and reproducing the procedure to
derive Eq. (3) yields

rðvÞ ¼
�
rðv0Þ5Qðv0Þ5 þ

20

απ2

Z
v0

v
QðvÞ6dv

�
1=5

QðvÞ−1;
(4)

whereQ ¼ dv=dt is the volume flow rate. It is worth noting
that this change of variables does not avoid the ill-posed
nature of the problem. The multiplicity of solutions of
Eq. (4) is illustrated in Fig. 1(d). In this figure, the
parametrized curves rðxÞ involve different tube lengths,
as they correspond to the same capillary volume V.
Next, the solution of the inverse problem in the anodized

alumina membrane is discussed. The nanoporous mem-
brane was fabricated by the two-step anodization process
described elsewhere [10,22]. The membrane surfaces were
inspected by SEM, and a typical image is included in
Fig. 3(a). The measured interpore distance di was around
101� 1 nm, and pore radii were estimated to be around
34� 5 and 28� 5 nm, for each side of the membrane,
respectively (SEM image analysis). The membrane thick-
ness was L ¼ 75 μm, as obtained by optical microscopy.
Capillary filling measurements were carried out by using
the experimental setup reported in previous works [10,20].
Between runs the membrane was washed with 2-propanol
and dried at room temperature. Reflected light intensity
as a function of time is measured after a liquid drop
(2-propanol) impinges over the membrane, as shown in
Fig. 3(a). The sensed light intensity is the result of the
interference of light reflected from the two fixed interfaces
[10,20]. The oscillations in reflectance [inset in Fig. 3(b)]
are a consequence of constructive and destructive interfer-
ence when the effective optical thickness of the membrane
is increased by the liquid intake. With a simple model of
effective medium, the extreme positions are converted into
the imbibed fluid volume fraction v=V [Fig. 3(b)].
Additionally, the total number of extremes N and the
membrane thickness L can be used to obtain the membrane
porosity, P ≈ 34% [10,20].
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FIG. 2 (color online). (a) Experimental setup to measure the
filling dynamics of a glass capillary, including a scheme of the
capillary with the imbibing fluid, and the coordinate systems used
in calculations. (b) Picture of the nonuniform cross-sectional
glass capillary. (c) Meniscus position as a function of time
measured from x ¼ 0 to L (continuous red) and from x ¼ L to 0
(dashed blue). (d) Capillary radius as a function of the axial
distance. The black curve is the measured profile determined by
photography image analysis. The continuous red curve and the
dashed blue curve are the predicted rðxÞ functions. The shaded
area represents the confidence bounds obtained from different
trials.
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Given the well-ordered array of pores in anodized
alumina [Fig. 3(a)], the membrane is regarded as an
assembly of straight nanochannels aligned in the flow
direction, all of them with the same length and pore radius
profile [22]. Thus, the velocity at which the liquid invades
the membrane is that of the capillary-driven flow in each
single pore, and hence the single capillary model can be
used to interpret the filling dynamics of the whole mem-
brane. To determine the membrane pore radius profile, a
procedure analogous to that used above for the glass
capillary is followed. The measured volume fraction
v=V was numerically differentiated by central differences

to obtain QðvÞ=V. The solutions for measurements in each
direction [red and blue data, Fig. 3(b)] were obtained using
Eq. (4), and they are reported in Fig. 3(c). The radii as a
function of volume are converted into radii as a function of
position with dvðxÞ ¼ πrðxÞ2dx. Absolute values of the
radius profile were obtained by using the experimental
value of L and the tabulated properties of 2-propanol
at 20 °C.
The solutions rðxÞ obtained [red and blue data, Fig. 3(c)]

coincide within the shaded area that represents the error.
This agreement shows the consistency of the method.
Moreover, the radius values at the pore ends are in agree-
ment with those obtained from SEM image analysis in both
membrane faces. Additionally, the membrane porosity
estimated with the results in Fig. 3(c) and the interpore
distance is P ¼ 36%, which coincides with the porosity
obtained from the total number of extremes N. These
results confirm that the solution of the inverse problem
proposed here is suitable to determine the pore radius
profile in a wide range of length scales. The method is also
self-sufficient in the sense that no additional data are
needed to identify the right solution.
In conclusion, one may observe that the present work

contributes to elucidate two main aspects of capillary
filling. First, the ill-posed problem related to the inversion
of Eq. (1) is revealed. The physical consequences of this
mathematical feature are remarkable, namely, the fact that
capillaries with different radius profiles may present the
same filling dynamics. The second relevant aspect concerns
the attractive applications of the method proposed to solve
the inverse problem. In fact, the possibility to accurately
identify the internal geometry of nanochannels in a non-
destructive manner is of particular interest for the charac-
terization of nanoporous matrices. In addition, both the
model and the calculation procedure are useful to ration-
alize the design of passive microfluidic pumps, where the
liquid transport is controlled by the geometry of micro- and
nanochannels. In microfluidic systems, however, rectan-
gular cross-section channels having sharp corners pose
several problems to model capillary-driven transport,
due to the particular effect of edges. Additionally, the
hydrodynamic resistance involves two possible dimen-
sional variations (width and/or depth, as a function of
axial distance). Handling these difficulties in modeling is
precisely one of our research interests at present.
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