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We describe a new kind of phase-preserving quantum amplifier which utilizes dissipative interactions
in a parametrically coupled three-mode bosonic system. The use of dissipative interactions provides a
fundamental advantage over standard cavity-based parametric amplifiers: large photon number gains are
possible with quantum-limited added noise, with no limitation on the gain-bandwidth product. We show
that the scheme is simple enough to be implemented both in optomechanical systems and in super-
conducting microwave circuits.
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Introduction.—The past few years have seen a resur-
gence of interest in amplifiers working near the funda-
mental limits set by quantum mechanics [1], in contexts
varying from quantum information processing in circuits
[2–4], to radio astronomy [5], to ultrasensitive force
detection (e.g., for gravity wave detection [6]). The
standard paradigm for a quantum-limited, phase-preserving
amplifier is the nondegenerate parametric amplifier
(NDPA) [7–10], which is based on a coherent interaction
involving three bosonic modes (pump, signal, and idler).
This interaction simply converts a pump mode photon into
two photons, one in the signal mode, the other in the idler
mode. The result is that weak signals incident on the signal
mode are amplified, with the minimum possible added
noise. There has been remarkable progress in realizing such
amplifiers using superconducting circuits [11–18]. This in
turn has enabled a number of breakthroughs, from the
measurement of mechanical motion near the quantum limit
[19], to the measurement of quantum jumps of a super-
conducting qubit [20,21] and the implementation of quan-
tum feedback schemes [22,23].
Despite their many advantages, standard cavity-based

parametric amplifiers suffer from the limitation of having a
fixed gain-bandwidth product: as one increases the gain of
the amplifier, one also reduces the range of signal frequen-
cies over which there is amplification. This is a funda-
mental consequence of the amplification mechanism, which
involves introducing effective negative damping to the signal
mode. The consequent reduced damping rate determines
the amplification, but also sets the amplification bandwidth
(see, e.g., [3]). This tradeoff between gain and bandwidth
can severely limit the utility of cavity-based parametric
amplifiers in many applications. Traveling-wave parametric
amplifiers (TWPAs) [24,25] do not use cavities and are in
principle not limited in the same way. In practice, however,
good device performance and bandwidth of TWPAs is
limited by the requirement of phase-matching (though see
Ref. [26] for recent progress in the microwave domain).
In this work, we introduce a new approach for quantum-

limited amplification based now on three localized bosonic

modes. Unlike a NDPA, our scheme explicitly involves
dissipative (i.e., non-Hamiltonian) interactions between the
modes. We show that this approach allows a large gain with
quantum limited noise, but crucially is not limited by a
fixed gain-bandwidth product: the gain can be arbitrarily
large without any corresponding loss of bandwidth. Note
that non-Hamiltonian evolution is also utilized in a very
different way in probabilistic amplifiers [27–30], which can
stochastically amplify signals without adding noise.
Our approach is related to reservoir engineering [31],

where one constructs a nontrivial dissipative reservoir that
relaxes a system to a desired target state (e.g., an entangled
state [32–36]). Here, we instead construct an engineered
reservoir which mediates a dissipative amplification proc-
ess. Our mechanism can also be interpreted as a kind of
coherent feedback process [37–40], where the amplifica-
tion is the result of an autonomous quantum nondemolition
(QND) measurement combined with a feedback operation.
Our scheme is simple enough to be realized using existing
experimental capabilities, either with three-mode optome-
chanical systems (where a mechanical mode couples to two
electromagnetic cavity modes) [41,42], or with supercon-
ducting circuits [16,43,44].
Model.—While our scheme is amenable to many pos-

sible realizations, we focus here for concreteness on a
three-mode optomechanical system. Two cavity modes
(frequencies ω1 and ω2), are coupled to a single mechanical
mode ωM, cf. Fig. 1. The cavity photons interact with the
mechanical mode via radiation pressure forces, and the
system is described by the Hamiltonian Ĥ ¼ ĤS þ Ĥdiss.
Here, ĤS is the coherent system Hamiltonian (ℏ ¼ 1),

ĤS ¼
X
j¼1;2

fωj þ gjðb̂þ b̂†Þgâ†j âj þ ωMb̂
†b̂; (1)

where b̂ (âj) is the annihilation operator for the mechanical
resonator (cavity j), and gj is the optomechanical coupling
strength for cavity j. Ĥdiss describes the damping of all
three modes (each by independent baths), and the laser
drives on the two cavity modes; these are treated at the level
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of standard input-output theory [3,45], resulting in cavity
(mechanical) damping rates κj (γ).
In what follows, the two cavity modes will play roles

similar to “signal” and “idler” modes in a NDPA, whereas
the mechanics will be used to mediate an effective inter-
action between them. To achieve this, we assume a strong
coherent drive on each cavity, detuned to the red (blue)
mechanical sideband for cavity 1 (2), (i.e., drive frequencies
ωL;1=2 ¼ ω1=2∓ωMÞ. We work in an interaction picture
with respect to the free Hamiltonians, and perform displace-
ment transformations: âj ≡ āje�iωMt þ d̂j, where āj is the
average classical amplitude of cavity j due to the laser drive;
we take these to be real without loss of generality. Assuming
the standard experimental situation where gj are small and
āj are large, we linearize ĤS, resulting in

ĤS ¼G1ðd̂1b̂† þ d̂†1b̂Þ þG2ðd̂2b̂þ d̂†2b̂
†Þ þ ĤCR: (2)

Here, Gj ¼ gjāj are the many-photon optomechanical
couplings, and ĤCR describe nonresonant interaction proc-
esses. We focus on the good-cavity limit ωM ≫ κj, γ, where
the effects of ĤCR will be negligible. We will thus start by
dropping ĤCR for transparency; i.e., we make the rotating
wave approximation (RWA); full results beyond the RWA
are presented in the figures and in the Supplemental
Material [46].
If G1 ¼ 0, the Hamiltonian of Eq. (2) describes an

optomechanical NDPA, with the mechanics acting as idler;
this was recently realized by Massel et al. [47]. One might
guess that turning on the beam-splitter interaction with
cavity 1 by making G1 ≠ 0 would simply act to laser cool
and optically damp the mechanical mode [48,49], but not
fundamentally change the amplification physics. This is not
the case: as we show below, the coherence between the
control lasers leads to a completely new mechanism. For
G1 ≥ G2, the interactions in Eq. (2) have been discussed as
a means to generate photonic entanglement [34,50–55];
amplification was not discussed. In contrast, we focus
on the case G1 ¼ G2; while this only leads to minimal

intracavity entanglement [52], it is optimal in allowing the
mechanics to mediate amplifying interactions between the
two cavities.
Dissipative interactions.—If the mechanical resonator

was strongly detuned (in the interaction picture) from the
two cavity modes by a frequency Δ, then standard adia-
batic elimination of the mechanics would yield the
NDPA Hamiltonian, ĤPA¼ ~Gd̂1d̂2þH:c:, with ~G∼G2=Δ.
In contrast, we are interested in the resonant case, where
the induced interactions are more subtle. As the system
is linear, one can exactly solve the Heisenberg-Langevin
equations corresponding to Eq. (2), and use these to derive
effective equations for the cavity modes with the mechanics
eliminated [46]. We first consider the simple limit where
γ ≫ κ, G; this results in effectively instantaneous induced
interactions. We also specialize to the ideal case where
κ1 ¼ κ2 ≡ κ (see [46] for κ1 ≠ κ2). Introducing the effective
coupling rate Γ ¼ 4G2=γ, the resulting Langevin equations
for the cavity modes are

_̂d1 ¼ −
ðκ þ ΓÞ

2
d̂1 −

Γ
2
d̂†2 −

ffiffiffi
κ

p
d̂1; in þ i

ffiffiffi
Γ

p
b̂in; (3a)

_̂d2 ¼ −
ðκ − ΓÞ

2
d̂2 þ

Γ
2
d̂†1 −

ffiffiffi
κ

p
d̂2; in þ i

ffiffiffi
Γ

p
b̂†in: (3b)

The operators d̂j;in (b̂in) describe the quantum and
thermal noise incident on the two cavities (the mechanics);
they have zeromean and correlation functionshôinðtÞô†inðt0Þi ¼
hô†inðtÞôinðt0Þiþδðt− t0Þ ¼ δðt− t0Þðn̄To þ1Þ, where o ¼ dj,
b, and n̄To is the thermal occupancy of each bath.
The mechanical resonator gives rise to two effects in

Eqs. (3). First, it gives rise to an additional positive
damping Γ of mode 1, and an additional negative damping
−Γ of mode 2; each effect corresponds simply to one of the
two terms in Eq. (2). In contrast, the joint action of both
interaction terms gives rise to terms in Eqs. (3) reminiscent
of a NDPA, where d̂1 is driven by d̂†2 and vice versa. Note
crucially the opposite sign of this term in Eq. (3a) versus
Eq. (3b); this difference implies that these terms cannot
be derived from an NDPA interaction Hamiltonian ĤPA.
Instead, they correspond to an effective dissipative para-
metric interaction. Such terms can be obtained from
Lindbladian dissipators in a quantum master equation
[46]; they are also sometimes referred to as a phase-
conjugating interaction [56]. On their own, such terms
cause a coherent rotation between d̂1 and d̂

†
2, and as such no

amplification. However, when combined with the mechan-
ically induced damping and antidamping terms, one finds a
striking result: the linear system described by Eqs. (3)
always gives rise to exponential decay in the time domain at
a rate κ=2, irrespective of the value of Γ [46]. Thus, unlike
a standard paramp, the mechanically induced cavity-cavity
interactions here do not give rise to a slow system decay
rate, and do not cause any instability (i.e., the linear system
is stable for all values of Γ). This conclusion holds even
when γ=κ is finite: the system decay rates are independent
of G [46].

FIG. 1 (color online). (a) Schematic showing the optomechan-
ical realization of the dissipative amplification scheme. Two
driven cavities (1,2) are both coupled parametrically to a third
auxiliary mechanical mode. The mechanics mediates a dissipative
interaction between modes 1 and 2. Signals incident on either
cavity are amplified in reflection. (b) Alternate realization, where
two pump modes ω1;P, ω2;P are used to generate the required
interaction Hamiltonian, Eq. (2); this setup could be directly
implemented using superconducting microwave circuits [46].
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Scattering properties.—While the mechanically induced
interactions do not yield any net antidamping, they do
nonetheless enable amplification. We use standard input-
output theory to calculate the scattering matrix S½ω� which
relates output and input fields. For simplicity, we first
neglect internal cavity losses. Introducing the cooperativity
C ¼ 4G2=ðκγÞ, and defining the input and output vectors
D̂l ≡ ðd̂1;l; d̂†2;l; b̂lÞT (l ∈ fin; outg), we find in the limit
γ ≫ κ, ω,

D̂out½ω� ¼ S½ω�D̂in½ω�; (4)

S½ω� ¼

0
BBB@

2C−1− ~ω2

ð1−i ~ωÞ2
2C

ð1−i ~ωÞ2
2i

ffiffi
C

p
1−i ~ω

−2C
ð1−i ~ωÞ2 − 2Cþ1þ ~ω2

ð1−i ~ωÞ2
−2i

ffiffi
C

p
1−i ~ω

2i
ffiffi
C

p
1−i ~ω

2i
ffiffi
C

p
1−i ~ω −1

1
CCCA; (5)

where ~ω ¼ 2ω=κ. Note that at ω ¼ 0, the above result
holds for any value of γ; the full expression of S½ω� for
arbitrary γ is given in the Supplemental Material [46]. For
C > 1, S½ω� implies that signals incident on either cavity in
a bandwidth ∼κ around resonance will be amplified and
reflected. For concreteness, we focus on signals incident
on cavity 1 (see Supplemental Material [46] for the similar
case of signals incident on cavity 2). The amplitude gain
for such a signal at resonance is simply the reflection
coefficient S11½0� ¼ 2C − 1≡ ffiffiffiffiffiffiffiffiffiffi

G1½0�
p

. Clearly, the gain
can be made arbitrarily large by increasing C with no
corresponding reduction of bandwidth (which remains ∼κ).
This is in stark contrast to a standard NDPA, and is a direct
consequence of the behavior discussed above: the mechan-
ically induced interactions do not induce any net negative
damping of the system.
While for simplicity we have focused on the case where

the mechanical damping γ is large, the same physics holds
for an arbitrary κ=γ ratio. In the limit of large C, the photon
number gain is well approximated as

G1½ω�≡ jS11½ω�j2 ≃ C2

½1þ ð2ω=γÞ2�½1þ ð2ω=κÞ2�2 : (6)

The effective bandwidth of the gain interpolates between κ
for γ=κ ≫ 1, and γ for γ=κ ≪ 1. Our general conclusions
still hold: the gain can be arbitrarily large by increasing C,
and there is no fundamental limitation on the gain-
bandwidth product in this system.
Added noise.—Our scheme can also achieve a quantum-

limited added noise. This follows immediately from the S
matrix in Eq. (5). As usual, we define the added number of
noise quanta of the amplifier by first calculating the noise
spectral density of the amplifier output (i.e., d̂1; out½ω�).
The contributions to this noise from the mechanical and
cavity 2 input noises constitute the amplifier added noise.
Expressing this as an equivalent amount of incident noise
in the signal defines the number of added noise quanta
n̄add½ω�; the quantum limit on this quantity in the large-gain
limit is n̄add½ω� ≥ 1=2 [3]. We find at zero frequency

n̄add½0� ¼
ð ffiffiffiffiffiffiffiffiffiffi

G1½0�
p þ1Þ2

G1½0�
�
1

2
þ n̄Td2

�
þ1þ ffiffiffiffiffiffiffiffiffiffi

G1½0�
p
G1½0�

ð1þ2n̄TbÞ

¼ 1

2
þ n̄Td2 þ

2þ2n̄Td2 þ2n̄Tbffiffiffiffiffiffiffiffiffiffi
G1½0�

p þO
�

1

G1½0�
�
: (7)

Thus, if cavity 2 is driven purely by vacuum noise, then in
the large-gain limit our amplifier approaches the standard
quantum limit on a phase-preserving linear amplifier. On
some level, this is surprising. The ideal performance of a
NDPA can be attributed to the fact that it has only a single
additional degree of freedom beyond the signal mode [3]. In
contrast, our system has two additional degrees of freedom
(i.e., idler mode and mechanical mode); one might have
expected that the presence of an extra mode would imply
extra noise beyond the quantum limit. That this is not the
case highlights the fact that themechanicalmode acts only as
a means to mediate an effective dissipative coupling.
It is also worth stressing that in the large G1 limit, the

contribution of mechanical thermal noise is suppressed by a
factor 1=

ffiffiffiffiffiffiffiffiffiffi
G1½0�

p
. This is in stark contrast to the optome-

chanical NDPA of Ref. [47]. In that system, the mechanical
mode acts as the idler; as such, quantum-limited perfor-
mance is only possible if the mechanical resonator is at
zero temperature, irrespective of the amplifier gain.
To illustrate the effectiveness of our scheme, we show in

Fig. 2 expected results for the gain and added noise for a
realization based on a microwave-cavity optomechanical
system, similar to those in Refs. [57,58]. While such
experiments typically have a small mechanical damping
rate γ (and, hence, small bandwidth), one could use a third
auxiliary mode to both laser cool the mechanical mode and
enhance its linewidth [52]; we have assumed this situation.
One could also use a GHz-frequency, low-Q mechanical
resonator (similar to, e.g., Ref. [59]) to achieve bandwidths
∼10–100 MHz [46].
Connection to QND measurement.—To provide further

intuition on the mechanism underlying our scheme, it is
useful to consider the dynamics in terms of canonically
conjugate quadrature operators. We introduce these oper-
ators in our interaction picture in the standard way: d̂j ≡
ðX̂j þ iP̂jÞ=

ffiffiffi
2

p
and b̂ ¼ ðÛ þ iV̂Þ= ffiffiffi

2
p

. The interaction
Hamiltonian in Eq. (2) (with G1 ¼ G2 ¼ G) then becomes

Ĥint ¼
ffiffiffi
2

p
GðÛX̂þ þ V̂P̂−Þ; (8)

where we have introduced joint cavity quadrature operators
X̂� ¼ ðX̂1 � X̂2Þ=

ffiffiffi
2

p
, P̂� ¼ ðP̂1 � P̂2Þ=

ffiffiffi
2

p
.

Equation (8) lets us understand the importance of having
G1 ¼ G2: for this choice, X̂þ and P̂− are QND observables.
They commute with the Hamiltonian and are thus con-
served quantities. The QND interaction allows the
mechanical resonator to “measure” both of these joint
cavity quadratures: the V̂ (Û) quadrature of the mechanical
output field will contain information on X̂þ (P̂−).
A QND measurement on its own will not generate

amplification. The interaction in Eq. (8) does more: it also
performs a kind of coherent feedback operation, where
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the results of the “measurement” are used to displace the
unmeasured quadratures X̂− and P̂þ. For example, via the
first term in Eq. (8), the mechanical V̂ quadrature measures
X̂þ: at zero frequency (and ignoring noise), the Heisenberg
equations of motion (EOM) yield V̂ ¼ −ð2 ffiffiffi

2
p

G=γÞX̂þ.
But via the second term in Eq. (8), we see that V̂ is a force
on the X̂− quadrature. Again, the EOMs at zero frequency
yield X̂− ¼ ð2 ffiffiffi

2
p

G=κÞV̂ ¼ −2CX̂þ. This directly translates
into the (ω ¼ 0) input-output relations

X̂þ; out ¼ −X̂þ; in; (9a)

X̂−;out ¼ 4CX̂þ; in − X̂−;in; (9b)

where we neglect mechanical noise contributions. Thus, the
joint measurement plus feedback operation has made X̂−
an amplified copy of X̂þ, while leaving the QND observable
X̂þ unperturbed. In an analogous fashion, P̂þ becomes an
amplified copy of P̂−. If we now express d̂1;out in terms of
joint quadratures, we can immediately understand how we
obtain amplification. For large C, we have

d̂1;out ¼
1

2

X
σ¼�

ðX̂σ þ iP̂σÞout ≃ 1

2
ðX̂− þ iP̂þÞout

≃ 1

2
ð4CÞðX̂þ þ iP̂−Þin ¼ 2Cðd̂1 þ d̂†2Þin: (10)

Thus, the QND measurement-plus-feedback operations on
the joint quadrature operators directly let us understand the
structure of the scattering matrix, and the observed ampli-
fication. Note that somewhat analogous QND interactions
play a crucial role in the construction of continuous variable
cluster states [60].
The QND form of Eq. (8) also explains the absence of

any induced damping of the cavities by the mechanics, see
[46]. When G1 ≠ G2, the QND nature of the interaction is
lost (i.e., Xþ, P− are no longer conserved), and thus for
fixed G2=G1, G1½0� saturates as a function of C1. The same
is true when κ1 ≠ κ2. One finds that in this case, the gain
G1½0� saturates at a value ½ðκ1 þ κ2Þ=ðκ2 − κ1Þ�2 in the large

C limit [46]. We stress that even with small coupling or
damping rate asymmetries, one can achieve very large gains
[see Fig. 2(a)] with no loss of bandwidth. One can even
significantly increase the amplification bandwidth over the
symmetric case, yielding amplitude-gain bandwidth prod-
ucts which far exceed κ (see Supplemental Material [46]).
Superconducting circuit realization.—Our scheme could

also be realized in a superconducting circuit, where the
required interactions in Eq. (2) are realized using Josephson
junctions. Here, the role of the mechanical mode would
now also be played by a microwave cavity mode, allowing
γ to be large. Further details on such realizations are pres-
ented in the Supplemental Material [46], where we show
that they offer advantages over conventional Josephson
paramps, such as Ref. [61]. Using similar parameters to
that work, our scheme can achieve quantum-limited ampli-
fication with a bandwidth of ∼47 MHz and a amplitude
gain-bandwidth product of ∼1900 MHz, a factor of 3.8
larger than the device reported in Ref. [61]; unlike
Ref. [61], this performance does not require a low-Q signal
cavity. An optomechanical system using a high-frequency,
low-Q mechanical resonator (like in the experiment of
Ref. [59]) could also attain similar performance.
Conclusion.—We have described a new method for

quantum-limited phase-preserving amplification which uti-
lizes dissipative interactions; unlike standard cavity-based
parametric amplifiers, it does not suffer from any funda-
mental limitation on the gain-bandwidth product. The
scheme can be implemented both with optomechanics
and with superconducting circuits.
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