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We theoretically discuss analogues of the anomalous and the integer quantum Hall effect in driven-
dissipative two-dimensional photonic lattices in the presence of a synthetic gauge field. Photons are
coherently injected by a spatially localized pump, and the transverse shift of the in-plane light distribution
under the effect of an additional uniform force is considered. Depending on pumping parameters, the
transverse shift turns out to be proportional either to the global Chern number (integer quantum Hall effect)
or to the local Berry curvature (anomalous Hall effect). This suggests a viable route to experimentally
measure these quantities in photonic lattices.
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The amazing developments in the experimental study of
quantum fluids of light in the past decade are opening the
way to use photonic systems to improve our understanding
of phenomena originally known in the context of con-
densed matter physics [1]. After pioneering studies of
Bose-Einstein condensation [2] and superfluidity effects
[3], a great interest is presently devoted to topological
effects, such as synthetic gauge fields for photons and edge
states in photonic topological insulators [4–9]. Inspired by
related developments in solid state physics [10–13], these
advances are opening exciting perspectives in the direction
of quantum Hall effects with light [14–16] as well as
promising applications to photonic devices [17,18].
In this perspective, it is natural to wonder how robust

topological effects are against photon losses and the
consequent need for an external optical pumping. This
question is even more intriguing as Laughlin’s gedanken
experiment in Ref. [19] has related the integer quantum
Hall effect to gauge invariance, while gauge-dependent
quantities such as the photon phase are experimentally
accessible in optics, especially under a coherent pumping.
Crucial concepts in the theoretical description of quan-

tum mechanical particles in periodic lattices under a strong
gauge field are the Berry curvature of a band and its integral
over the Brillouin zone, the Chern number. This latter is a
topological invariant of a band, and, in two-dimensional
solid state systems, it is related to the quantized Hall
conductance and to the number of chiral edge states
[20,21]. Pioneering experimental studies of these concepts
in the photonic context were reported in Refs. [5–9]. On the
other hand, the local Berry curvature is a geometrical
property of a band, which affects various electronic trans-
port properties, in particular, the so-called anomalous Hall
conductivity [22–24]. In the past years, many proposals
have appeared to measure it in cold atomic gases trapped in
optical lattices [25–30].
In this Letter, we propose a scheme to observe optical

analogues of the anomalous and the (integer) quantum

Hall effects by using a class of topological photonic
devices of high experimental interest, namely, coupled
cavity arrays [8,32]. In contrast to the conservative photon
dynamics studied in the waveguide experiments of
Refs. [6,7] and considered in the proposal [31], the present
work takes advantage of the driven-dissipative nature of the
system to relate the Berry curvature and the Chern number
to observable quantities. Our ideas are first illustrated on
the simplest case of the square-lattice photonic Hofstadter
model of [8], and then we generalize the proposal to
photonic honeycomb lattices [32], where a nonzero Berry
curvature appears in the vicinity of the (gapped) Dirac
points when a lattice asymmetry is introduced [33,34].

Model.—We describe the conservative dynamics of the
two-dimensional photonic lattice by using a tight-binding
Hamiltonian, which in the square lattice case has the form

H ¼
X

m;n

½Fna†m;nâm;n − Jðâ†m;nâmþ1;n þ â†mþ1;nâm;n

þ e−i2παmâ†m;nâm;nþ1 þ ei2παmâ†m;nþ1âm;nÞ�: (1)

Here âm;n (â
†
m;n) is the annihilation (creation) operator of a

photon on the (m, n) site of the lattice, and the energy zero
is set at the energy of the bare cavities. The hopping along
the �x direction has a real amplitude J, while hopping
along the �y direction carries an x-dependent phase
�2παm, which encodes the synthetic magnetic field acting
on the photons, corresponding to the Landau gauge vector
potential ~A ¼ ð0; 2παx; 0Þ with a synthetic magnetic flux
per lattice plaquette of α in units of the unit magnetic flux.
Lengths are measured in units of the lattice spacing.
The first term in (1) models an external constant force of

magnitude F acting on the photons along the −y direction.
In the absence of this term, the single-particle physics
reduces to the one of charged electrons moving on a square
lattice with a perpendicular magnetic field as first consid-
ered by Harper and Hofstadter [35,36] in the context of
solid state physics. In particular, the energy spectrum E as a
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function of α shows a fractal structure known as
Hofstadter’s butterfly. In the following, we shall assume
that the magnetic flux has a rational α ¼ p=q value with
coprime integers p and q; in this case, we have q energy
bands of dispersion EiðkÞ, whose nontrivial topology is
apparent as the local Berry curvature ΩiðkÞ and the global
Chern number 2πCi ¼

R
MBZ d

2kΩiðkÞ are nonzero for
each of them, where the last integral is over the magnetic
Brillouin zone (MBZ) defined by ½−π=q; π=q� × ½−π; π�.
As we are considering a driven-dissipative photonic

lattice, we have to include the effect of pumping and losses
[1]. Losses are assumed to be local and uniform for all lattice
sites at a rate γ. The pumping field is taken to be mono-
chromatic with frequency ω0 and a spatial amplitude profile
fm;n. In the linear optics case under consideration here,
photons are noninteracting, so exact results are obtained
by the mean-field equations for the expectation values
am;nðtÞ ¼ hâm;nðtÞi. In the steady state, these evolve accord-
ing to the harmonic law am;nðtÞ ¼ am;ne−iω0t with time-
independent amplitudes am;n satisfying the linear system

J½amþ1;n þ am−1;n þ e−i2παmam;nþ1 þ ei2παmam;n−1�
þ ½ω0 þ iγ − Fn�am;n ¼ fm;n; (2)

which can be numerically solved on a finite lattice. In the
following, we shall assume that only the central site (0,0) is
pumped: fm;n ¼ fδm;0δn;0.
This physics is illustrated in Fig. 1 starting from theF¼0

case with no external force: In Figs. 1(a) and 1(b), the
pump frequency is chosen within the lowest magnetic band
of α ¼ 1=5. As the loss rate γ is increased from γ ¼ 0.01J
(a) to γ ¼ 0.02J (b), photons are able to travel over shorter
distances before decaying, so the photon intensity distri-
bution gets more and more spatially localized in the
vicinity of the pumped site: Rather than a hindrance, the
lossy nature of the system is here a useful tool to suppress
spurious effects due to the lattice edges. The exponential
localization effect is even more dramatic when the fre-
quency falls within a band gap [Fig. 1(c)], and the bands are
excited in a nonresonant way.
Measuring topological quantities.—The situation

becomes more interesting once we turn on the synthetic
electric field F ≠ 0 directed along the negative y direction:
From Fig. 1(d), it is apparent that the photon intensity
distribution is no longer centered at the pump position but
is significantly shifted in the leftward direction transverse
to the applied force. Examples of the dependence of the
transverse displacement of the center of mass hxi≡
½Pm;nmjam;nj2�=½

P
m;njam;nj2� on the applied force F are

displayed in Fig. 1(e), where we plot hxi as a function of F
for a pump frequency within the lowest energy band of
α ¼ 1=5 and two different loss values γ=J ¼ 0.05 and 0.08.
The displacement hxi grows linearly for small F; for the
parameters in the figure, this linear regime extends up
to jFj≲ 0.02J.

We now proceed to relate the slope of this linear
dependence to the topological properties of the band; a
single band description is legitimate, provided the pump
frequency ω0 falls within (or close to) an energy band and
γ is smaller than the band gap separating from the next
bands. In the linear regime, this gives the simple relation
between the displacement and the Berry curvature (a full
proof of (3) as well as its extension to more complex—e.g.,
honeycomb—lattices is given in Supplemental Material
[37])

hxi ¼ F

R
MBZ γΩðkÞnðkÞ2R

MBZ nðkÞ
; (3)

where nðkÞ ¼ ½ðω0 − EðkÞÞ2 þ γ2�−1 is the (normalized)
population distribution within the band under considera-
tion; EðkÞ andΩðkÞ are the energy dispersion and the local
Berry curvature, respectively, of the corresponding band.

FIG. 1 (color online). (a)–(d) Photon amplitude distribution
jam;nj on a 41 × 41 square lattice with α ¼ 1=5. The central sites
are pumped. The force F is zero for (a)–(c) and F ¼ 0.1J for (d).
In (a),(b),(d), the pump frequency is tuned to ω0=J ¼ −2.95
within the lowest energy band; in (c), it is tuned to ω0=J ¼ −2.85
within a band gap. The loss rate is γ ¼ 0.01J for (a),(c),(d) and
γ ¼ 0.02J for (b). The bright regions have higher intensity than
the dark regions. (e) Displacement hxi as a function of F, in units
of J, for a pump frequency ω0=J ¼ −2.95 with α ¼ 1=5. The
solid (blue) line is for γ=J ¼ 0.05, and the dashed (green) line is
for γ=J ¼ 0.08.
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The integral in (3) can be worked out explicitly in the
two cases of large and small γ as compared to the bandwidth
of the energy band Δwidth; for large γ ≫ Δwidth, one obtains
the Chern numbers, and for small γ ≪ Δwidth, one finds the
Berry curvature. In practical experiments, the loss rate γ
can be tuned by artificially reducing the quality factor of
the cavities or, alternatively, by tuningΔwidth by varying the
hopping amplitude J.
Large loss: Chern number and quantum Hall effect.—

In the limit γ ≫ Δwidth, the detuning term ½ω0 − EðkÞ�2 in
nðkÞ can be neglected, and a formula for the transverse
shift is found:

hxi ≈ F

R
MBZ d

2kΩðkÞ=γ3R
MBZ d

2k1=γ2
¼ qCF

2πγ
(4)

that involves only theChernnumberC of the band:This result
is an optical analogue of the integer quantum Hall effect.
Of course, this formula is valid only if the loss rate γ is

much smaller than the band gap to the nearest energy band
Δgap. This condition imposes a compromise between a
large enough value of γ=J to encompass the whole band of
interest and a small enough value to minimize the spurious
effect of the neighboring bands. For the lowest band of
α ¼ 1=5, the large separation from the higher bands
(Δgap=Δwidth ∼ 24) allows for a good compromise: By
using γ ¼ 2Δwidth and ω0 tuned at the band center, the
estimated value Cn ≈ −0.96 of the Chern number is close to
the exact value C ¼ −1.
As the leading order correction due to the neighboring

bands to (4) does not depend on γ, a more precise estimate
can be obtained by repeating the measurement on different
samples with different values of the normalized loss rate
γ=J so as to extract the coefficient of 1=γ in (4). In Table I,

we list the estimated Chern numbers Cn obtained by
numerically calculating the mean displacement hxi for
different values of α, and we compare them with the exact
values C obtained from the Diophantine equation approach
[12,20]. For each case, the pump frequency ω0 is chosen to
be at the center of the band under examination, and the
coefficient of the 1=γ term is calculated for a normalized
loss value γ=2J ¼ ðJ=Δwidth þ J=ΔgapÞ−1.
As long as the bandwidth is much larger than the band

gap, the agreement is very good. On the other hand,
the large deviation between the estimated and the exact
Chern numbers of the second and fourth bands of α ¼ 1=5
(Cn ¼ −0.66 instead of C ¼ −1) is because the correspond-
ing bandwidth Δwidth ∼ 0.45J is very close to the size of
the band gapΔgap∼0.52J. WhenΔwidth>Δgap, this method
is not reliable at all, so the corresponding cases in the table
have been left blank.
Small loss: Berry curvature and anomalous Hall

effect.—When the loss γ is much smaller than the band-
width Δwidth, the k-space distribution can be approximated
as a delta function on the k-space locus where ω0 ≈ EðkÞ.
In analogy to the (intrinsic contribution to the) anomalous
Hall effect, the displacement

hxi ≈ FγΩ̄ðω0Þ
R
MBZ d

2knðkÞ2R
MBZ d

2knðkÞ ≈
Ω̄ðω0ÞF

2γ
(5)

turns out to be proportional to the average Ω̄ðω0Þ of the
Berry curvature on the EðkÞ ¼ ω0 curve in k space.
Remarkably, different regions of the Brillouin zone can
be separately addressed just by tuning the frequencyω0 of the
coherent pump. In the case of the Hofstadter lattice, numeri-
cal calculations suggest that the Berry curvature is a function
of the energy only, so a reliable estimate of the local Berry
curvature at the different points of the MBZ can be obtained
from a measurement of Ω̄ðω0Þ provided only the iso-E locus
in k space does not cross stationary points of EðkÞ.
The accuracy of this result is validated in Fig. 2, where

we plot the estimated value of the Berry curvature for the
lowest band of α ¼ 1=3 and the central band of α ¼ 1=5,
and we compare them with the true values. The loss rate is
taken here to be γ=Δwidth ¼ 1=30; for such a small value
of γ, photons propagate over longer distances before
decaying, so larger lattices are needed to suppress the
effect of the edges. Overall, the estimated value of the Berry
curvature agrees well with its exact value for almost all
values of the pump frequency ω0 in the bulk of the bands.
Of course, the method breaks down in the vicinity of the
band edges and becomes meaningless within the energy
gaps (indicated by the gray shading in the figure). But note
also the small spurious bumps around ω0=J ∼ −2.45 for
α ¼ 1=3 and ω0=J ∼ 0 for α ¼ 1=5: These deviations
correspond to stationary points of the band structure
EðkÞ where the last equality of (5) is no longer valid.
The quantitative discrepancy gets suppressed if smaller

TABLE I. Table of the estimated Chern numbers Cn of the
photonic bands, compared to the real Chern numbers C, for
several values of α. The numerical estimations are obtained by
implementing the method discussed in the text on 41 × 41 square
lattices. The blank cases indicate bands for which Δwidth < Δgap
where the method is not reliable; the * signs indicate bands for
which Δwidth ≃ Δgap and large discrepancies are expected.

1st 2nd 3rd 4th 5th 6th

α ¼ 1
3

C −1 þ2 −1
Cn −0.91 −0.91

α ¼ 1
5

C −1 −1 þ4 −1 −1
Cn −0.97 −0.66� −0.66� −0.97

α ¼ 1
6

C −1 −1 þ2 þ2 −1 −1
Cn −0.96 −1.06 −1.06 −0.96

α ¼ 3
7

C þ2 −5 þ2 þ2 þ2 −5
Cn 2.05 2.01

α ¼ 4
9

C þ2 þ2 −7 þ2 þ2 þ2
Cn 1.96 2.02 1.92 2.02
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values of γ are used. It is, however, important to notice
that, since our scheme does not benefit from topological
protection, the actual measured displacement hxi can be
affected by disorder. To suppress the deleterious effect of
disorder, one may repeat the measurement by choosing
different lattice sites for the pumping and then taking an
average.
Photonic honeycomb lattice.—As a last point, we discuss

the nontrivial new features that arise when extending
our study to honeycomb lattices. We consider the usual
tight-binding model of the honeycomb lattice sketched
in Fig. 3(a), with a nearest-neighbor hopping J which is
now real and equal for all links [34]. The unit vectors
are a1 ≡ ð3=2; ffiffiffi

3
p

=2Þ and a2 ≡ ð3=2;− ffiffiffi
3

p
=2Þ, where

the distance between two sites is taken to be unity. In
the presence of a small energy difference Δ between the

sublattices, the band degeneracy at the Dirac points
K;K0 ¼ 2πð1=3;�1=3

ffiffiffi
3

p Þ is lifted by a band gap Δ,
and the two bands have a nontrivial Berry curvature even in
the absence of a synthetic magnetic field [33]; as illustrated
in Fig. 3(b), the Berry curvature is concentrated in the
vicinity of the (gapped) Dirac points, and, for each band, it
is approximately a function of the energy only. As a result
of the time-reversal symmetry, the Berry curvatures at K
and K0 exactly compensate, giving a vanishing global
Chern number for both bands and therefore no quantum
Hall effect. As the averaged Berry curvature vanishes on
any isoenergy curve, extension of the analogue anomalous
Hall effect to honeycomb geometries requires separating
the contributions of the K and K0 points.
The simplest strategy in this direction is to use a spatially

extended pump with a finite in-plane wave vector in the
vicinity of, e.g., the K point:

fðRÞ ¼ fe−R
2=2σ2eiK·R; (6)

where σ is the spatial extent of the pump spot and R is the
position of each site. In the experimental setup of Ref. [32],
this can be obtained by shining a laser field on the
microcavity at a finite and well-chosen angle with the
microcavity axis [1]. As before, the basic idea is to find out
how the Berry curvature controls the transverse displace-
ment of the intensity distribution when an in-plane force is
applied to the photons.
While doing this, one has to deal with further compli-

cations stemming from the inequivalence of the two
sublattices: As a result of this, measurements using a pump
in the form (6) would in fact lead to nonzero displacements
even for F ¼ 0 and to a slope not directly related to the
Berry curvature. All these difficulties can be resolved by
repeating the measurement using two different, symmetric
frequencies �ω0 and taking a weighted difference of the
two measured displacements:

hxi− ≡
P

RRxðjaRj2 − ja0Rj2ÞP
RðjaRj2 þ ja0Rj2Þ

; (7)

where aR is the photon field at position R when the pump
frequency is ω0 and a0R is when the frequency is −ω0.
With this definition of hxi−, a straightforward analytical
calculation (see the Supplemental Material [37] for details
and also for an alternative strategy to measure the Berry
curvature right at the tip of the gapped Dirac cone) shows
that the formula (3) holds with the integral taken over the
Brillouin zone and the integrand being multiplied by the
Fourier transform of the source. Then, using a source which
uniformly covers the vicinity of K but is very small near
other Dirac cones, one can estimate the Berry curvature
from the transverse shift using the anomalous Hall effect
formula (5). The accuracy of this method is validated in
Fig. 3(c), where we plot the estimated value of the Berry

FIG. 2 (color online). The estimated Berry curvature Ω as a
function of ω0, in units of J (dots) as compared to the exact value
(solid lines) for γ=Δwidth ¼ 1=30 on 201 × 201 lattices. (a) Low-
est band of square lattice at α ¼ 1=3 and (b) middle band of
square lattice at α ¼ 1=5.

FIG. 3 (color online). (a) Photonic honeycomb lattice. Sites
belonging to the sublattices A and B are denoted by empty and
filled circles, respectively. (b) The Berry curvature of the upper
band of a honeycomb lattice with Δ ¼ 0.3J. The Dirac points are
the vertices of the hexagon. (c) The estimated Berry curvature Ω
as a function of ω0, in units of J (dots) as compared to the exact
value (solid line), for the honeycomb lattice without a synthetic
magnetic field. System parameters are γ=J ¼ 0.04 and σ ¼ 3 on a
200 × 200 unit cell honeycomb lattice with site energy mismatch
Δ=J ¼ 0.3. The shaded region indicates the band gap.
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curvature using this method for the region around the K
Dirac point; agreement with the theoretical value (solid
line) is very good.

Conclusion.—In this Letter, we have discussed optical
analogues of the anomalous and integer quantum Hall
effects in driven-dissipative photonic lattices with non-
trivial geometrical and topological properties. Our results
suggest that both the Chern number and the local Berry
curvature of the photonic bands can be experimentally
extracted from the transverse displacement of the light
distribution under the effect of an additional force and
support the promise of photonic cavity arrays as a platform
to study the interplay of the nontrivial band topology with
many-body physics.

We are grateful to A. Amo for continuous exchanges
on photonic honeycomb lattices and to M. Hafezi, M.
Rechtsman, Y. Plotnik, and R. O. Umucalılar for discus-
sions on topological photonic systems. These scientific
exchanges were supported by the POLATOM ESF net-
work. This work was partially funded by ERC through the
QGBE grant and by Provincia Autonoma di Trento.

[1] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[2] J. Kasprzak, M. Richard, S. Kundermann, A. Baas,

P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H.
Szymańska, R. André, J. L. Staehli, V. Savona, P. B.
Littlewood, B. Deveaud, and L. S. Dang, Nature (London)
443, 409 (2006).

[3] A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti,
I. Carusotto, R. Houdré, E. Giacobino, and A. Bramati,
Nat. Phys. 5, 805 (2009).

[4] F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100,
013904 (2008).

[5] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić,
Nature (London) 461, 772 (2009).

[6] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013).

[7] M. C. Rechtsman, J. M. Zeuner, A. Tünnermann, S. Nolte,
M. Segev, and A. Szameit, Nat. Photonics 7, 153 (2013).

[8] M. Hafezi, J. Fan, A. Migdall, and J. Taylor, Nat. Photonics
7, 1001 (2013).

[9] N. Jia, A. Sommer, D. Schuster, and J. Simon,
arXiv:1309.0878.

[10] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[11] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[12] B. A. Bernevig and T. L. Hughes, Topological Insulators
and Topological Superconductors (Princeton University,
Princeton, NJ, 2013).

[13] A. Stern, Ann. Phys. (N.Y.) 323, 204 (2008).
[14] J. Cho, D. G. Angelakis, and S. Bose, Phys. Rev. Lett. 101,

246809 (2008).
[15] R. O. Umucalılar and I. Carusotto, Phys. Rev. Lett. 108,

206809 (2012).
[16] M. Hafezi, M. D. Lukin, and J. M. Taylor, New J. Phys. 15,

063001 (2013).
[17] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor,

Nat. Phys. 7, 907 (2011).
[18] K. Fang, Z. Yu, and S. Fan, Nat. Photonics 6, 782 (2012).
[19] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[20] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den

Nijs, Phys. Rev. Lett. 49, 405 (1982).
[21] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[22] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,

1959 (2010).
[23] M.-C. Chang and Q. Niu, Phys. Rev. B 53, 7010 (1996).
[24] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and

N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
[25] A. M. Dudarev, R. B. Diener, I. Carusotto, and Q. Niu,

Phys. Rev. Lett. 92, 153005 (2004).
[26] G. Pettini and M. Modugno, Phys. Rev. A 83, 013619

(2011).
[27] H. M. Price and N. R. Cooper, Phys. Rev. A 85, 033620

(2012).
[28] D. A. Abanin, T. Kitagawa, I. Bloch, and E. Demler,

Phys. Rev. Lett. 110, 165304 (2013).
[29] E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos,

and J. J. Garcia-Ripoll, Phys. Rev. Lett. 107, 235301 (2011).
[30] A. Dauphin and N. Goldman, Phys. Rev. Lett. 111, 135302

(2013).
[31] M. Cominotti and I. Carusotto, Europhys. Lett. 103, 10001

(2013).
[32] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi,

D. Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître,
J. Bloch, and A. Amo, Phys. Rev. Lett. 112, 116402 (2014).

[33] D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809
(2007).

[34] A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[35] P. G. Harper, Proc. Phys. Soc. London Sect. A 68, 874
(1955).

[36] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[37] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.112.133902 for details.

PRL 112, 133902 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
4 APRIL 2014

133902-5

http://dx.doi.org/10.1103/RevModPhys.85.299
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nphys1364
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1038/nature08293
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nphoton.2012.302
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1038/nphoton.2013.274
http://arXiv.org/abs/1309.0878
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1016/j.aop.2007.10.008
http://dx.doi.org/10.1103/PhysRevLett.101.246809
http://dx.doi.org/10.1103/PhysRevLett.101.246809
http://dx.doi.org/10.1103/PhysRevLett.108.206809
http://dx.doi.org/10.1103/PhysRevLett.108.206809
http://dx.doi.org/10.1088/1367-2630/15/6/063001
http://dx.doi.org/10.1088/1367-2630/15/6/063001
http://dx.doi.org/10.1038/nphys2063
http://dx.doi.org/10.1038/nphoton.2012.236
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.71.3697
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/PhysRevB.53.7010
http://dx.doi.org/10.1103/RevModPhys.82.1539
http://dx.doi.org/10.1103/PhysRevLett.92.153005
http://dx.doi.org/10.1103/PhysRevA.83.013619
http://dx.doi.org/10.1103/PhysRevA.83.013619
http://dx.doi.org/10.1103/PhysRevA.85.033620
http://dx.doi.org/10.1103/PhysRevA.85.033620
http://dx.doi.org/10.1103/PhysRevLett.110.165304
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.111.135302
http://dx.doi.org/10.1103/PhysRevLett.111.135302
http://dx.doi.org/10.1209/0295-5075/103/10001
http://dx.doi.org/10.1209/0295-5075/103/10001
http://dx.doi.org/10.1103/PhysRevLett.112.116402
http://dx.doi.org/10.1103/PhysRevLett.99.236809
http://dx.doi.org/10.1103/PhysRevLett.99.236809
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1088/0370-1298/68/10/304
http://dx.doi.org/10.1088/0370-1298/68/10/304
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133902
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133902

