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We extend orthogonal optical coding, previously applied to multiuser classical communication
networks, to entangled photons. Using a pulse shaper and sum-frequency generation for ultrafast
coincidence detection, we demonstrate encoding and decoding of biphoton wave packets. Applying
one code to the signal photon spreads the wave packet in time and creates a null at zero delay; filtering the
idler with the matched code recovers a narrow correlation peak, whereas applying any other code leaves
the wave packet spread. Our results could prove useful in the development of code-based quantum

communication networks.

DOI: 10.1103/PhysRevLett.112.133602

Recently there has grown a significant interest in
classical analogues of many foundational quantum optical
phenomena, including Hong-Ou-Mandel interference [ 1-4]
and Franson dispersion cancellation [5-9]. And even though
the classical versions lack entanglement, they can at times
offer significant advantages over their quantum counter-
parts. For example, chirped-pulse interferometry [3] can
achieve the same resolution improvement as quantum
optical coherence tomography [10], but at classically high
power levels. Several of these classical analogues are
based on time-reversed versions of entanglement generation
[3,4,9]. Instead of using spontaneous parametric down-
conversion (SPDC) of a narrow-band pump to generate
broadband entangled photons, similar effects can be seen
by considering instead sum-frequency generation (SFG) of
broadband classical fields at a fixed up-conversion freq-
uency. This process effectively postselects only the spectral
combinations of the classical field that are correlated in the
same manner as entangled photons.

Alternatively, the field of Fourier pulse shaping [11]
has bridged the gap between quantum and classical
realizations in the opposite direction; considered originally
for coherent classical pulses, it has recently been extended
to the shaping of biphoton correlations as well [12—15].
Expanding on these results in pulse shaping, and exploiting
the operational similarities between classical narrow-band
SFG and entangled photons, we experimentally study a
new biphoton coding scheme based on spectral orthogon-
ality, previously utilized in classical optical code-division
multiple access [16,17]. Our results establish a novel
method for the encoding of information in the spectral
degree of freedom of biphotons, with the potential for
application not only in implementing multiuser quantum
key distribution (QKD) [18], but also in the development of
new code-based time-frequency QKD protocols, as alter-
natives to previous proposals based on dispersion [19] or
temporal modulation [20].
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The foundation for many optical code-division multiple
access realizations is some set of orthogonal codes, at
least as numerous as the number of users on the network.
So-called Hadamard codes (designations “Walsh” and
“Walsh-Hadamard” are also common [21]) are a convenient
choice. A given family consists of N length-N sequences of
ones and minus ones, or, equivalently, phases of 0 and 7;
each element of a given sequence is traditionally called a
“chip.” These codes have the property that any two different
sequences are orthogonal. That is, if we describe code m
and n by the corresponding vectors v,, and v,,, respectively,
we have

Vi Vo = Nbyyys ey

where §,,, is the Kronecker delta, equal to unity if m = n,
and zero otherwise. We mention here relevant work
involving spectral coding of coherent optical pulses, in
which one code is applied to half of the spectrum, and a
second one to the other half; then a narrow-band SFG field
is generated and measured [22,23]. Presuming that phase
matching permits all constituent frequencies to combine,
the generated SFG field at frequency 2wq, Esgg(2wy), is
given by the integral [24]

Esio(20) o [ dQE(wo + DE@ -9, @)
0

For an input field with a flat spectral amplitude, the integral
can be viewed as the inner product between the Hadamard
codes applied to each half of the spectrum. If they are
identical (i.e., a mirror image about w,), a high yield is
found, but if they differ, orthogonality ensures that the
integral drops to zero. This discrimination provides a means
for many users to communicate over the same spectrotem-
poral space. The sender encodes the message by applying
the intended receiver’s code to one spectral half, and only
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the receiver who applies the correct code to the opposite
half will see the message above the background.

The quantum version which we present relies on the
intrinsic spectral correlation of entangled photons, the
time-reversed version of classical SFG [3,4,9]. Considering
degenerate down-conversion of a monochromatic pump
beam at frequency 2wy, the biphoton state can be approxi-
mated as

| W) = M|vac),|vac); + /oo dQp(Q)|wo + Q) ay — Q);,
0
3)

where M ~ 1, “vac” denotes the vacuum state, ¢(Q) is
determined by phase-matching conditions, and s and i
represent the signal and idler, respectively [25]. Applying
the spectral filter H(w) to the signal and H;(®) to the idler,
we obtain the output biphoton wave packet

vt e o [~ dQp@H, (00 + Q) - Qe
0
4

the modulus squared of which gives the probability density
for detecting the signal photon a time 7 after the idler. If
¢(Q) is essentially flat over the frequencies considered, and
the spectral filters correspond to Hadamard codes, we have
precisely the situation in Eq. (2) at 7 = 0: matched codes
give a peak, whereas mismatched codes yield essentially
zero. How such coding on entangled photons would work
is summarized in Fig. 1. The signal half of the spectrum
corresponding to a temporally narrow biphoton is initially
encoded with a sequence of 0 and z phases, which spreads
and lowers the temporal correlation function, creating a null
at zero delay. Then a second phase code is applied to the
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FIG. 1 (color online). Principle of biphoton spectral coding.
(a) Encoding the biphoton. A sequence of 0 and = phase shifts
is applied to the signal half-spectrum of a temporally narrow
biphoton, which spreads the correlation function in time and
produces a null at 7 = 0. (b) Decoding the biphoton. A second
code is applied to the idler half of the spectrum. If it matches that
used for encoding, the narrow correlation peak is recovered,
while an unmatched code instead leaves the correlation function
in a new, but still spread, state.

idler. If the codes match in the symmetric sense, the sharply
peaked biphoton is recovered, with a temporal shape
identical to the uncoded biphoton in the ideal case. But
if the codes differ, the correlation function remains spread
with zero magnitude at 7 =0. We remark that this
configuration can be viewed as the spectral dual to the
temporal coding demonstrated in Ref. [26].

For a more intuitive understanding of our approach, one
can describe this encoding and decoding phenomenon as an
example of the quantum mechanical interference of indis-
tinguishable paths. Unlike classical probabilities, the com-
plex amplitudes associated with quantum paths interfere
with each other if they cannot be distinguished, even in
principle [27]. Several definitive examples of two-photon
interference, such as Hong-Ou-Mandel [1] and Franson
[28], can be viewed as the interference of two indistin-
guishable quantum mechanical paths. In our orthogonal
coding case, we instead have N indistinguishable bin
combinations of frequency pairs, for without additional
measurements that destroy the experiment, it is impossible
to tell through which Hadamard chips the detected photons
passed. Accordingly, the probability amplitudes interfere
with each other, and when mismatched codes give identical
numbers of pair offsets with combined phase shifts of 0 and
7, we obtain perfect cancellation at zero delay. Thus one
can view our orthogonal coding approach as an extension
of path interference in which the number of paths is
programmably controlled by a pulse shaper.

This flexibility in choosing the dimensionality of the
coding process—and, indeed, the effectiveness of the coding
itself—derives from the high degree of entanglement pos-
sessed by our biphoton source. In general, bipartite entan-
glement is quantified by the Schmidt number, which roughly
corresponds to the total signal-idler spectral modes contrib-
uting to the entanglement [29,30]. The Schmidt decom-
position conveys the information potential of an entangled
photon pair, indicating in our scheme the maximum useful
code dimensionality and also conceivably limiting the
spectral shapes of correlated signal-idler frequency modes.
Experimentally, this degree of entanglement is well charac-
terized by the Fedorov parameter [31], or the ratio of the
marginal signal bandwidth to that conditioned on a fre-
quency measurement of the idler. For our source, with a
total signal bandwidth over 2 THz and a conditional width
predicted to be less than 200 kHz (the pump laser linewidth)
the estimated Fedorov ratio is in excess of 10 million. Such
high-dimensional entanglement fully justifies the monochro-
matic pump assumption built into Eq. (3), and it also indi-
cates that our coding process, which we push to a dimension
of 40, is only beginning to access the intrinsic information
potential of the biphotons themselves; as we note later, exp-
erimental limitations such as pulse-shaper resolution prove
far more restrictive.

Our experimental setup is given in Fig. 2. We couple
about 16 mW of a 774-nm pump laser into a periodically
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FIG. 2 (color online). Experimental setup. High-frequency
photons at 774 nm decay into entangled photons through SPDC
in a PPLN waveguide. The pump is filtered out and the biphotons
coupled into optical fiber, in which a pulse shaper is used to
manipulate the spectrum and apply delay between the signal and
idler photons. The photons are then recombined via SFG in a
second PPLN waveguide, which acts as an ultrafast optical gate
for measuring coincidences.

Collimator

poled lithium niobate (PPLN) waveguide [32], which
generates entangled pairs through SPDC with an internal
efficiency of about 107> per coupled photon. The residual
pump is removed with filters and the biphotons coupled
into optical fiber. A commercial pulse shaper (Finisar
WaveShaper 1000S) distinguishes signal and idler by
frequency and applies the spectral codes. The power
spectrum of the SPDC emission [33] varies by less than
0.8 dB over the 2.4-THz signal and idler passbands set by
the pulse shaper, which ensures that all Hadamard chips
contribute with approximately equal weight, a necessary
condition to achieve orthogonality. The pulse shaper also
compensates for fiber dispersion and can impose a relative
delay between signal and idler for subsequent measure-
ments of the temporal correlation function. The photons are
then coupled into a second PPLN waveguide and, provided
they temporally overlap, can recombine via SFG into a
single photon at 774 nm; the measured internal efficiency
for this process is 10~ with optimal alignment. When the
phase-matching conditions allow all entangled frequency
pairs to combine with equal probability, the flux of SFG
photons at each delay step directly measures the temporal
correlation function on a femtosecond time scale, as first
shown in Ref. [12]. More details regarding our experi-
mental setup, as well as confirmation of operation in the
single-pair regime, are provided in Ref. [33].

While we do employ an SFG detection scheme in these
experiments, just as in the classical version [22,23], our use
is fundamentally different. In the classical implementation,
the process of narrow-band SFG is necessary to achieve the
desired spectral gating of the product of the input fields—
up-conversion evaluates only the waveform corresponding
to the Hadamard products. But in our case, SFG is required
only inasmuch as it furnishes sufficient timing resolution
to observe the fine features of the correlation function. The
orthogonality condition is imposed on the biphoton state
itself and therefore could be seen nonlocally by isolated
detectors possessing adequate resolution. Thus, our use of
SFG is not a fundamental, but only technical restriction

which could be removed in the future by improvements in
single-photon detector jitter to the picosecond level [34].

We first examine the utility of our biphoton phase codes
by testing the orthogonality of several length-N Hadamard
families, measuring the count rate at zero delay for all
possible code combinations. In a previous work [35], we
demonstrated an alternative amplitude coding method, in
which the maximum contrast between matched and mis-
matched cases is 2: 1. Here, however, utilizing pure phase
coding accompanied by ultrafast coincidence detection,
the contrast between the coincidences at zero delay for
matched and mismatched codes is ideally unbounded.
Experimentally, we have considered code lengths of 4, 8,
20, and 40 (chip bandwidths of 600, 300, 120, and 60 GHz,
respectively); the average measured contrast is 40:1 in the
N =4 case, 59:1 for N =8, 115:1 for N =20, and 49:1
for N = 40, limited primarily by accidentals and alignment
stability.

The full results for the length-20 and length-40 cases are
provided in Figs. 3(a) and 3(b), showing visually the sharp
discrimination for matched codes. The higher count rates
for code 1 in both plots, as well as for code 21 in the length-
40 case, are fully explained by theory. Because of the finite
pulse-shaper resolution, sharp phase transitions from O to z
introduce diffractive losses, a well-known effect in classical
pulse shaping [24]. Since the first code possesses no such
transitions (it consists entirely of zero-phase chips), and
code 21 of Fig. 3(b) has only one transition, the net count
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FIG. 3 (color online). Hadamard orthogonality for long
sequences. (a) Measured coincidences [s~'] at zero optical delay
for all combinations in the N = 20 code family. (b) Coincidence
map for length-40 codes. (c),(d) Specific example of length-40
coding. (c¢) With no codes applied, a sharp correlation function is
measured, but when code 28 is applied to the signal, the peak
disappears and the biphoton spreads. (d) Applying code 28 to the
idler recovers the sharp correlation function, yet programming
the wrong code (in this case, code 3) keeps the biphoton spread.
Error bars give the standard deviation of five 1-s measurements,
after dark count subtraction.
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rate after the coding and decoding process is appreciably
higher for these cases than in the other codes with multiple
7 phase jumps.

To highlight the biphoton coding picture presented in
Fig. 1, we also acquire full correlation functions for specific
combinations in the length-40 Hadamard map. Figure 3(c)
shows encoding of the signal photon using code 28 from
the two-dimensional map. For flat phase applied to both
signal and idler, the correlation function possesses a narrow
peak exceeding 9000 s~! in measured coincidences. [The
peak surpasses that in Fig. 3(b) due to alignment reoptim-
ization.] When code 28 is applied to the signal, the
waveform spreads, and only about 30 s~! are measured
at zero delay. The decoding process is verified in Fig. 3(d):
applying code 3 to the idler keeps the correlation function
spread, with a zero-delay SFG count rate of only about
60 s~!, whereas when code 28 is applied, the biphoton
regains its sharp peak. The height of the decoded peak is
reduced to about two thirds that of the uncoded case, which
again is in agreement with the expected drop from pulse-
shaper resolution. These results confirm the conceptual
picture of Fig. 1, showing that we can indeed hide and
recover a biphoton wave packet in our coding scheme.
Moreover, the fact that pulse-shaper resolution limits
the maximum code length that can be implemented—
introducing loss and waveform degradation as the chip
bandwidth decreases—mirrors similar findings in orbital
angular momentum, in which experimental imperfections
have been shown to fix an optimum dimension beyond
which the secure information capacity drops [36]. Proper
code-length selection will therefore play an important role
in developing our spectral coding approach in the context
of QKD.

Finally, while most Hadamard code combinations give
results that appear essentially featureless, certain special-
izations can yield interesting wave packets in their own
right. For example, choosing a code of alternating 0’s and
z’s for the signal and flat phase for the idler, we once again
obtain orthogonality at zero delay, suppressing the corre-
lation function peak. However, the pattern’s periodic nature
yields values of optical delay for which the biphoton packet
can display large maxima. For a chip bandwidth of Aw,
every other Aw bin pair picks up a z phase shift, but as
can be seen in Eq. (4), for delays © = +x/Aw, each bin
acquires an additional spectral phase of 0, z, 2z, 3z, etc.,
which precisely compensates for the alternating pattern
and allows each frequency pair to interfere constructively,
producing a temporal peak. Additional local maxima sur-
face at all odd multiples of the above delay, but the finite
chip bandwidth suppresses them so that most of the optical
energy is concentrated in the first two peaks about zero.
This particular code therefore converts a single correlation
peak into a doublet, with separation controlled by the chip
rate. Figure 4 furnishes experimental examples, for 240-
and 100-GHz chips. Theory is confirmed, as the generated
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FIG. 4 (color online). Correlation doublet creation. The length-
10 pattern, with 240-GHz chips, creates a separation of 4.2 ps; the
length-24 pattern, comprised of 100-GHz chips, increases this
separation to 10 ps. Again, error bars show the standard deviation
of five 1-s measurements, with dark counts subtracted.

peaks appear at +2.1 and =£5 ps, respectively. Two sub-
sidiary maxima are even discernible at £6.3 ps for the
240-GHz case, matching the odd-multiple prediction. These
findings provide just one example of the possibilities
available for biphoton manipulation based on optical codes.
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