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Range-Separated Brueckner Coupled Cluster Doubles Theory

James J. Shepherd,* Thomas M. Henderson, and Gustavo E. Scuseria

We introduce a range-separation approximation to coupled cluster doubles (CCD) theory that
successfully overcomes limitations of regular CCD when applied to the uniform electron gas. We
combine the short-range ladder channel with the long-range ring channel in the presence of a Bruckner
renormalized one-body interaction and obtain ground-state energies with an accuracy of 0.001 a.u./electron
across a wide range of density regimes. Our scheme is particularly useful in the low-density and strongly
correlated regimes, where regular CCD has serious drawbacks. Moreover, we cure the infamous
overcorrelation of approaches based on ring diagrams (i.e., the particle-hole random phase approximation).
Our energies are further shown to have appropriate basis set and thermodynamic limit convergence, and
overall this scheme promises energetic properties for realistic periodic and extended systems which existing
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methods do not possess.
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Introduction.—Physicists have long sought an accurate
many-body description of electrons in solids. In this
context, the particle-hole random phase approximation
(RPA) has a long history in condensed matter physics [1].
Recently, it has seen increased emphasis in the frame-
work of density functional theory (DFT) for electronic
structure, where its orbital-based description of electronic
correlation has been of great utility [2,3]. One of the most
important successes of the RPA lies in the description
of dispersion interactions [4], often in range-separated
schemes which combine a long-range RPA picture with
short-range DFT [5-7]. These range-separated schemes
take advantage of the fact that the RPA accurately captures
long-range correlations, and tend to mitigate its basis set
sensitivity and its known failures for short-range correla-
tions. This failure occurs because RPA predicts too deep
a correlation hole and therefore too large a correlation
energy [8,9]. One popular remedy is the incorporation
of second-order screened exchange (SOSEX) effects, as
introduced by Freeman [10]. This built on previous work
by Gell-Mann and Brueckner, who demonstrated that
second-order exchange is required to yield the correct
constant term in the high-density expansion for the
electron gas [11]. This correction has in recent times been
adapted for a wide range of real electronic structure
problems [2,12,13].

An alternative approach is motivated by noting that the
RPA is an infinite-order summation of the ring diagrams
from many-body perturbation theory [11]. From this
perspective, the overbinding of the RPA is due to the
absence of other diagrams. Amongst these, the ladder
diagrams are thought to be the most important [14].
Ladder diagrams have been proposed to yield high-quality
short-range correlation functions and have been discussed
as an alternative to screened exchange [14]. However,
ladder-only theories suffer from the divergences associated
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with finite-order perturbation theory applied to a
Coulombic interaction in metallic solids [15-17].

We here suggest combining the long-range accuracy
of RPA with the short-range accuracy of ladder diagrams
within a range-separated CCD, based on modern develop-
ments relating RPA to CCD [18-21]. We perform a range
separation with a Yukawa potential and apply this tech-
nique to the electron gas, a model with substantial historical
significance [22,23] but nonetheless still receiving promi-
nent attention [24-27]. We show that this method improves
both the undercorrelation of CCD and the overcorrelation
of RPA, and does so in a manner which accurately captures
the high momentum (short distance) approach to the
complete basis set limit. We showcase high quality
(1073 a.u./electron) results at a wide range of densities
for finite electron numbers. We also demonstrate this
method is suitable for studying the thermodynamic limit.

Theory.—Coupled-cluster doubles (CCD) writes the
correlated wave function |¥) in an exponential form,

1
T = Zti“jbaZaZajai, 1)

W) =e'|0);
where |0) is a mean-field reference state (typically chosen
to be Hartree—Fock), T is an excitation operator and ¢ are
amplitudes to be found. Here and throughout, indices i, j, k,
[ 1abel single-particle states occupied in |0) and a, b, ¢, d
label states unoccupied in |0); summation convention is
used on dummy indices. Inserting this ansatz into the
Schrodinger equation leads to an energy

1
Econr = t?jbv;j/w (2)

E= <0|H|O> + Ecors 4

and amplitude equation
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where ¢ are Hartree-Fock single-particle energies and
74 = vff — vl is the matrix representation of the elec-
tron-electron interaction. Further details can be found in a
general review of coupled cluster theory [28].

The terms on the first line of the amplitude equation,
Eq. (3) are known as driving terms and arise in a lead-order
perturbative expansion of the wave function. The terms on
the second line are ring terms which together with the
driving terms yield the particle-hole (ph) RPA. Loosely,
they treat electronic excitations as bosonic harmonic
oscillators. The terms on the third line are ladder terms
which together with the driving terms yield the particle-
particle (pp) RPA, where they treat pairing excitations
as a bosonic oscillator. We note that pp-RPA is a less
well known type of RPA which is nonetheless familiar to
physicists in nuclear structure theory [29].

We call the terms on the fourth line “crossed-ring” terms as
they are ringlike but are needed to restore the fermionic
antisymmetry of the 7 amplitudes. The last class of diagrams
are what we name the “mosaic” terms which are joint ladder-
ring diagrams that contribute to the Brueckner effective
one-body Hamiltonian [30]. Explicitly, we can incorporate
these terms into the left hand side of the Eq. (3) as follows:

1—il cd. 1—kl ad

i = €T 5 Vealiy's Mla = €a =5 Vadlki - “)
Here, we have anticipated this matrix being diagonal in a
canonical plane wave basis set due to momentum conserva-
tion. The interpretation of this is a renormalization of the
single-particle spectrum to account for the effects of corre-
lation. Overall, therefore, coupled-cluster theory combines
these channels through a unified set of amplitudes and yields
a properly fermionic wave function which incorporates both
kinds of RPA fluctuations [20].

Because the pp-RPA accurately describes short-range
correlations but underestimates long-range correlations,
while the conventional ph-RPA is instead accurate for
long-range correlations and overestimates short-range cor-
relation, a natural approach which combines the benefits of
both is to work through a range-separated scheme in which
the Coulomb potential is split into a short-range piece to be
treated with the ladder diagrams and a long-range piece
which is treated with the ring terms. We choose to use a
Yukawa separation

1 e 1 —e 712
— = , 5)

51 2 2

where the parameter y is taken to be the Thomas-Fermi
screening parameter. This is an approximation and repre-
sents the static limit of the screening from particle-hole
RPA and is physically appropriate for metals, though it is
well know that this approach is insufficiently screened in
semiconductors or insulators [3,31]; it works best when the

dielectric properties of the material are homogeneous.
We can now rewrite the CCD amplitude equations
replacing the potential with a long-range potential for
the ring terms and a short-range potential for the ladder

terms and excluding the crossed rings:
ab tc_'d

IR 1,
(i +1j = 1a = )17 = Uijb+§(USR)cd ij +§(”SR)1’]’ ki

1 _ _
+Z(USR)IZ§fff’Zf + (DR S21s¢
+ (BLR) e 1% + (Rt 15 (6)

From the perspective of the random phase approximation,
this is the addition of particle-particle terms with particle-
hole terms [20]. We remove the crossed rings from these
equations because they do not represent an harmonic
oscillator problem that can be added into pp-RPA or
ph-RPA [20]. Further technical details are provided as
Supplemental Material [32].

Finite basis set electron gas calculations.—The con-
tinuum electron gas Hamiltonian is familiar to most, but
here it is important to note that we use a basis of plane
waves: ¢; « exp(ik; - r)).

The momenta, k, associated with these plane waves have
a finite spacing specified uniquely by a particle number (N)
and a density (r,, the Wigner-Seitz radius). This model is
then typically referred to as the finite simulation-cell
electron gas. The infinite particle, N — oo, limit is referred
to as the thermodynamic limit and the energy in this limit is
uniquely defined only by the density r,. In a frequently
used procedure, diffusion Monte Carlo simulations can be
made of finite electron numbers and extrapolated to the
thermodynamic limit [22,33].

For the methods considered here, we also require an
energy cutoff to give a finite number of basis functions (M);
even for a finite particle number an infinite basis is
required. The extrapolation procedure to reach the com-
plete basis set limit, M — oo, has only been recently
codified for plane waves [34,35] although these methods
have long been in use in quantum chemistry [36].

In summary, the energies we are able to compute have
three parameters: M, N, and r;.

Finite particle, complete basis set limit.—We present
results for the 14 electron system at the complete basis set
limit in Fig. 1, where we calculate the error of each method
shown with respect to quantum Monte Carlo benchmarks
[37]. We also make comparison with dRPA 4 SOSEX, a
variant of ph-RPA and second-order screened exchange
common in condensed matter physics [12,32].

The range separated scheme reported here returns an
energy that is consistently within 0.001 a.u. per electron of
the exact result, and is of comparable or better accuracy to
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FIG. 1 (color online). Error of the range separated schemes
measured with respect to QMC data; the shaded section of the
graph represents 0.001 a.u. per electron. (Unless otherwise noted,
N =14 and M — o).

dRPA + SOSEX energies and CCD. For more generality
we also plot the same curve for the 54 electron system for
which only diffusion Monte Carlo results are avail-
able [38,39]. Since these only have an accuracy of around
0.001 a.u. per electron in the high density regime [40], the
disagreement between the range separation energy and that
from QMC calculations is slightly larger.

For further comparison, we provide different CCD
calculations where different channels have been excluded.
The nomenclature in this paper uses prefixes to denote
included channels in a calculation: r for rings, / for ladders,
x for crossed rings, and m for mosaics. For example,
rmCCD is a CCD calculation performed with the driving,
rings and mosaic terms only. The two methods shown,
rmCCD (similar to ph-RPA) and ImCCD (similar to
pp-RPA), are known to overcorrelate and undercorrelate,
respectively; their combination in range separated CCD
performs significantly better.

Basis set convergence.—Although sometimes over-
looked, an important aspect of basis set methods is the
manner in which the correlation energy is captured as the
basis set is expanded. Basis sets which are said to describe
correlation consistently describe the physics incrementally
and allow for the best extrapolation. For a given
Hamiltonian and basis set, this is related to the manner
in which a method captures static (strong) versus dynamic
(weak) correlation. Exact results from exact diagonalization
in a finite basis sets are the best benchmarks to compare
behavior between methods.

It has been remarked that dRPA + SOSEX based on a
Kohn—Sham reference performs spuriously well for the
electron gas [41], in spite of the description of the correlation
hole likely being similar to dRPA and hence too deep [8,9].
The overestimation of the correlation energy due to this
comes from basis functions with high momenta, and can
therefore be seen in the basis set extrapolation curves for
large basis set sizes (M) [34]. Thisis shown in Fig. 2, where a
variety of methods are compared. Theories derived from
dRPA and second-order perturbation theory (MP2) all have a
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FIG. 2 (color online). Comparison of approach to the complete
basis set limit between different methods at (a) r, = 1.0 and (b)
ry = 5.0. Error bars on the QMC data are shown at 2o, where
they better represent 95% confidence intervals, for emphasis.
(N =14, M — oo by extrapolation [42]). Comparison data were
drawn from Ref. [34].

behavior that enters the linear 1/M regime too quickly and
with too steep a gradient. The quality of the Kohn-Sham
dRPA + SOSEX result does not therefore translate to good
basis set energies, and therefore can be seen to result from a
cancellation of capturing too little correlation energy around
the Fermi surface and too much correlation energy at higher
momenta.

In contrast, our range-separated scheme retains the much
improved behavior of CCD. The benefit of maintaining a
single wave function description of the problem, is that we
can relate this back to the physical real-space structure of the
wave function. The gradient on approach to the complete
basis set limit s related to how a method captures the electron
correlation holes of the system. Consistency between our
proposed method and exact results suggests that this is
captured accurately on average between all electrons.

Thermodynamic limit.—In the thermodynamic limit
(TDL), finite order perturbation theories can yield divergent
energies. One example of this is that the second-order MP2
energy diverges. There has been substantial success in
examining these analytically, but with CC theories this can
be very difficult due to the need to solve nonlinear
equations. Approaching this limit numerically is also
difficult due to slow divergences and the rising cost of
simulating additional particles.

We follow a recent method due to Shepherd and Griineis
[43]. In outline, this explored a minimal representation
of the area in k space around the Fermi sphere which is
the origin of the low-momentum excitations that cause the
divergence. This amounts to performing a numerical
quadrature of a small area around the Fermi sphere
(typically of radius v/2 larger) by more and more finely
spaced grids in such a way that the divergence can be seen
by constant and predictable growth of the energy. By a
judicious choice of basis set sizes for each system size,
computational cost can be controlled. Although only a
small fraction of the total energy is represented in this
region, it was shown to be enough to demonstrate the
divergence in the energy.
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FIG. 3 (color online).

Behavior on approach to the TDL. Each point on this graph represents a single N and M and values vary between

N = 14-3006 with M = 38 — 8338; the gas density was r; = 1.0 a.u. In (a), we compare energies. Divergent methods appear as a
straight line, apparent convergences as a curve. The lines only represent fits after the method is determined to converge or diverge, and
are only intended as a guide to the eye. In (b), we compare the orbital energy gap HF and the same gap in mCCD; the latter remains
positive and finite in the TDL (see text). Comparison data are explained in more depth in Ref. [44].

Figure 3(a) plots such an analysis for various methods
described in this paper. MP2 is well understood to have a
divergent energy and can be used therefore as a divergence
benchmark. We plot MP2 energies against energies
obtained with different theories. A correlation with MP2
suggests that the method in question diverges at the same
speed as MP2. Since all higher order divergences are
quicker, the appearance of a deviation from correlation
with MP2 implies a convergent energy. This is exemplified
by dRPA. Our companion study discusses these limitations
more thoroughly [44].

As expected, the dRPA does not have a linear correlation
with MP2, nor does CCD which would overlay the dRPA
line on this scale. The ladder-only diagrams (ICCD)
diverge, which is also consistent with a variety of previous
comments and discussions in the literature (e.g., [15]).
More surprisingly, the same appears true for rCCD which is
subtly different from dRPA [18]. In general, however,
methods can be made to converge by the inclusion of
mosaic diagrams and changing the reference for the
calculation to the Brueckner Hamiltonian. This can be
seen most dramatically by comparing pairs of lines with
and without mosaics: rCCD with rmCCD; 1CCD with
ImCCD; and MP2 with mCCD. This test also shows that
the range-separated scheme converges, as desired.

Finite electron gases have gapped orbital energy spectra
due to the finite spacing of k states. The orbital energy gap
calculated from Hartree-Fock theory, i.e.,

: )

E,= %min|€i +ei—e,—¢
closes in the TDL, which can be seen by examining the gap
for a series of system sizes as shown in Fig. 3(b). The
closure of this orbital energy gap is one of the reasons that
perturbation theories diverge for metals, since the smallest
energy denominator is just twice the smallest orbital energy
gap. In contrast, adding mosaic terms yields a modified

single-particle spectrum which remains gapped even in the
TDL, which suppresses the divergences, though we must
point out that this nonzero orbital energy gap does not
imply that the many-particle wave function is insulating.
More discussion of this is included in the Supplemental
Material [32].

Conclusion.—We have made an approximation of the
CCD equations using ideas inspired from range separation
in density functional theory and applied it to finite electron
gas systems. We find a combination of terms which couple
together p p-RPA in the short range and ph-RPA in the long
range and in a manner that is superior to both methods.

This allows us to propose an approximation with the same
computational cost scaling as CCD with several desirable
properties: (a) improved accuracy over CCD, especially in
the low-density regime; (b) improved accuracy over various
forms of dRPA + SOSEX, especially in calculating energies
from high-momentum basis functions; (c) retention of a
finite energy per particle in the thermodynamic limit. This
method performs well over a wide range of density regimes.
The formulation of this method in terms of the coupled
cluster wave function ansatz should allow for further
investigation of solid state properties using tools and
methods built upon this framework. Therefore, we hope
that the method presented here will be transferable to real
periodic and extended systems, where there is a growing
interest in treating problems in solid state materials science
with wave function and many-body methods.
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Welch Foundation (C-0036), and DOE-CMCSN (DE-
SC0006650).

133002-4



PRL 112, 133002 (2014)

PHYSICAL REVIEW LETTERS

week ending
4 APRIL 2014

"jjs6 @rice.edu

[1] D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951); D. Pines
and D. Bohm, Phys. Rev. 85, 338 (1952); D. Bohm and
D. Pines, Phys. Rev. 92, 609 (1953).

[2] J. Harl and G. Kresse, Phys. Rev. Lett. 103, 056401
(2009).

[3] T. Leininger, H. Stoll, H.-J. Werner, and A. Savin, Chem.
Phys. Lett. 275, 151 (1997); E. Goll, H.-J. Werner, and
H. Stoll, Phys. Chem. Chem. Phys. 7, 3917 (2005); E. Goll,
H.-J. Werner, H. Stoll, T. Leininger, P. Gori-Giorgi, and
A. Savin, Chem. Phys. 329, 276 (20006); S. Lebegue, J. Harl,
T. Gould, J. G. Angyén, G. Kresse, and J. F. Dobson, Phys.
Rev. Lett. 105, 196401 (2010).

[4] J.F. Dobson, A. White, and A. Rubio, Phys. Rev. Lett. 96,
073201 (2006).

[5] J. Toulouse, 1. C. Gerber, G. Jansen, A. Savin, and J. G.
Angyén, Phys. Rev. Lett. 102, 096404 (2009).

[6] B.G. Janesko, T.M. Henderson, and G.E. Scuseria,
J. Chem. Phys. 130, 081105 (2009).

[7] F. Bruneval, Phys. Rev. Lett. 108, 256403 (2012).

[8] K. S. Singwi, M.P. Tosi, R.H. Land, and A. Sjolander,
Phys. Rev. 176, 589 (1968).

[9] S. Kurth and J. P. Perdew, Phys. Rev. B 59, 10461 (1999).

[10] D.L. Freeman, Phys. Rev. B 15, 5512 (1977).

[11] M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).

[12] H. Eshuis, J. E. Bates, and F. Furche, Theor. Chem. Acc.
131, 1 (2012).

[13] J. Paier, X. Ren, P. Rinke, G. E. Scuseria, A. Griineis, G.
Kresse, and M. Scheffler, New J. Phys. 14, 043002 (2012).

[14] R.E. Bishop and K. H. Liihrmann, Phys. Rev. B 17, 3757
(1978); 26, 5523 (1982); R. E. Bishop, Theor. Chim. Acta
80, 95 (1991).

[15] D.L. Freeman, J. Phys. C 16, 711 (1983).

[16] J. Cioslowski and P. Ziesche, Phys. Rev. B 71, 125105
(2005).

[17] N.D. Drummond and R. J. Needs, Phys. Rev. B 79, 085414
(2009).

[18] G.E. Scuseria, T.M. Henderson, and D.C. Sorensen,
J. Chem. Phys. 129, 231101 (2008).

[19] D. Peng, S.N. Steinmann, H. van Aggelen, and W. Yang,
J. Chem. Phys. 139, 104112 (2013).

[20] G.E. Scuseria, T. M. Henderson, and 1. W. Bulik, J. Chem.
Phys. 139, 104113 (2013).

[21] H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88,
030501 (2013).

[22] D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566
(1980).

[23] J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048
(1981).

[24] S. Huotari, J. A. Soininen, T. Pylkkéinen, K. Haméldinen,
A. Issolah, A. Titov, J. McMinis, J. Kim, K. Esler, D. M.
Ceperley, M. Holzmann, and V. Olevano, Phys. Rev. Lett.
105, 086403 (2010).

[25] N.D. Drummond, P. Lépez Rios, R.J. Needs, and C.J.
Pickard, Phys. Rev. Lett. 107, 207402 (2011).

[26] M. Holzmann, B. Bernu, C. Pierleoni, J. McMinis, D. M.
Ceperley, V. Olevano, and L. Delle Site, Phys. Rev. Lett.
107, 110402 (2011).

[27] L. Baguet, F. Delyon, B. Bernu, and M. Holzmann, Phys.
Rev. Lett. 111, 166402 (2013).

[28] R.J. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291
(2007).

[29] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, Berlin, 1980).

[30] G.E. Scuseria, Int. J. Quantum Chem. 55, 165 (1995).

[31] T. Shimazaki and Y. Asai, Chem. Phys. Lett. 466, 91
(2008).

[32] See Supplemental Material http://link.aps.org/supplemental/
10.1103/PhysRevLett.112.133002 for further discussions,
which includes Refs. [20,22,30,34,35,39,40,42,43,45-54].

[33] N.D. Drummond, R.J. Needs, A. Sorouri, and W. M. C.
Foulkes, Phys. Rev. B 78, 125106 (2008).

[34] J.J. Shepherd, A. Griineis, G. H. Booth, G. Kresse, and
A. Alavi, Phys. Rev. B 86, 035111 (2012).

[35] A. Griineis, J.J. Shepherd, A. Alavi, D. P. Tew, and G. H.
Booth, J. Chem. Phys. 139, 084112 (2013).

[36] C. Hattig, W. Klopper, A. Kohn, and D. P. Tew, Chem. Rev.
112, 4 (2012).

[37] For N = 14, the benchmarks here come from full configu-
ration interaction quantum Monte Carlo [50] for the high-to-
metallic density regime and diffusion Monte Carlo for the
remainder [48,51]. These results are effectively exact follow-
ing extensive development and benchmarking [34,40,42,43].

[38] Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev. B
58, 6800 (1998).

[39] P. Lépez Rios, A. Ma, N. D. Drummond, M. D. Towler, and
R.J. Needs, Phys. Rev. E 74, 066701 (2006).

[40] J.J. Shepherd, G. Booth, A. Griineis, and A. Alavi, Phys.
Rev. B 85, 081103 (2012).

[41] A. Griineis, M. Marsman, J. Harl, L. Schimka, and G.
Kresse, J. Chem. Phys. 131, 154115 (2009).

[42] J.J. Shepherd, G. H. Booth, and A. Alavi, J. Chem. Phys.
136, 244101 (2012).

[43] J.J. Shepherd and A. Griineis, Phys. Rev. Lett. 110, 226401
(2013).

[44] J.J. Shepherd, T.M. Henderson, and G.E. Scuseria,
J. Chem. Phys. 140, 124102 (2014).

[45] J.J. Shepherd, P. L. Rios, N.D. Drummond, R.J. Needs,
and A. Alavi (to be published); J.J Shepherd, P. L. Rios,
R.J. Needs, R.J. Needs, J. A.-F. Mohr, G.H. Booth,
A. Griineis, G. Kresse, A. Alavi, APS Meeting Abstracts 1,
24003 (2013).

[46] R.J. Bartlett, Chem. Phys. Lett. 484, 1 (2009).

[47] L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R.J. Needs,
S.D. Kenny, and A.J. Williamson, Phys. Rev. B 53, 1814
(1996).

[48] R.J. Needs, M. D. Towler, N. D. Drummond, and P. Lépez
Rios, J. Phys. Condens. Matter 22, 023201 (2010).

[49] M. Holzmann, D. M. Ceperley, C. Pierleoni, and K. Esler,
Phys. Rev. E 68, 046707 (2003).

[50] G. H. Booth, A. Griineis, G. Kresse, and A. Alavi, Nature
(London) 493, 365 (2013).

[51] P. Lépez Rios, Pers. Comm. (2013).

[52] R.D. Mattuck, A Guide to Feynman Diagrams in the
Many-Body Problem, Dover Books on Physics and
Chemistry (Dover, New York, 1992), 2nd ed..

[53] A. Griineis, M. Marsman, and G. Kresse, J. Chem. Phys.
133, 074107 (2010).

[54] R.M. Martin, Electronic Structure: Basic Theory and
Practical Methods (Cambridge University Press, Cambridge,
England, 2004).

133002-5


http://dx.doi.org/10.1103/PhysRev.82.625
http://dx.doi.org/10.1103/PhysRev.85.338
http://dx.doi.org/10.1103/PhysRev.92.609
http://dx.doi.org/10.1103/PhysRevLett.103.056401
http://dx.doi.org/10.1103/PhysRevLett.103.056401
http://dx.doi.org/10.1016/S0009-2614(97)00758-6
http://dx.doi.org/10.1016/S0009-2614(97)00758-6
http://dx.doi.org/10.1039/b509242f
http://dx.doi.org/10.1016/j.chemphys.2006.05.020
http://dx.doi.org/10.1103/PhysRevLett.105.196401
http://dx.doi.org/10.1103/PhysRevLett.105.196401
http://dx.doi.org/10.1103/PhysRevLett.96.073201
http://dx.doi.org/10.1103/PhysRevLett.96.073201
http://dx.doi.org/10.1103/PhysRevLett.102.096404
http://dx.doi.org/10.1063/1.3090814
http://dx.doi.org/10.1103/PhysRevLett.108.256403
http://dx.doi.org/10.1103/PhysRev.176.589
http://dx.doi.org/10.1103/PhysRevB.59.10461
http://dx.doi.org/10.1103/PhysRevB.15.5512
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1103/PhysRev.106.364
http://dx.doi.org/10.1007/s00214-011-1084-8
http://dx.doi.org/10.1007/s00214-011-1084-8
http://dx.doi.org/10.1088/1367-2630/14/4/043002
http://dx.doi.org/10.1103/PhysRevB.17.3757
http://dx.doi.org/10.1103/PhysRevB.17.3757
http://dx.doi.org/10.1103/PhysRevB.26.5523
http://dx.doi.org/10.1007/BF01119617
http://dx.doi.org/10.1007/BF01119617
http://dx.doi.org/10.1088/0022-3719/16/4/017
http://dx.doi.org/10.1103/PhysRevB.71.125105
http://dx.doi.org/10.1103/PhysRevB.71.125105
http://dx.doi.org/10.1103/PhysRevB.79.085414
http://dx.doi.org/10.1103/PhysRevB.79.085414
http://dx.doi.org/10.1063/1.3043729
http://dx.doi.org/10.1063/1.4820556
http://dx.doi.org/10.1063/1.4820557
http://dx.doi.org/10.1063/1.4820557
http://dx.doi.org/10.1103/PhysRevA.88.030501
http://dx.doi.org/10.1103/PhysRevA.88.030501
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevLett.105.086403
http://dx.doi.org/10.1103/PhysRevLett.105.086403
http://dx.doi.org/10.1103/PhysRevLett.107.207402
http://dx.doi.org/10.1103/PhysRevLett.107.110402
http://dx.doi.org/10.1103/PhysRevLett.107.110402
http://dx.doi.org/10.1103/PhysRevLett.111.166402
http://dx.doi.org/10.1103/PhysRevLett.111.166402
http://dx.doi.org/10.1103/RevModPhys.79.291
http://dx.doi.org/10.1103/RevModPhys.79.291
http://dx.doi.org/10.1002/qua.560550211
http://dx.doi.org/10.1016/j.cplett.2008.10.012
http://dx.doi.org/10.1016/j.cplett.2008.10.012
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133002
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133002
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133002
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133002
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133002
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133002
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.133002
http://dx.doi.org/10.1103/PhysRevB.78.125106
http://dx.doi.org/10.1103/PhysRevB.86.035111
http://dx.doi.org/10.1063/1.4818753
http://dx.doi.org/10.1021/cr200168z
http://dx.doi.org/10.1021/cr200168z
http://dx.doi.org/10.1103/PhysRevB.58.6800
http://dx.doi.org/10.1103/PhysRevB.58.6800
http://dx.doi.org/10.1103/PhysRevE.74.066701
http://dx.doi.org/10.1103/PhysRevB.85.081103
http://dx.doi.org/10.1103/PhysRevB.85.081103
http://dx.doi.org/10.1063/1.3250347
http://dx.doi.org/10.1063/1.4720076
http://dx.doi.org/10.1063/1.4720076
http://dx.doi.org/10.1103/PhysRevLett.110.226401
http://dx.doi.org/10.1103/PhysRevLett.110.226401
http://dx.doi.org/10.1063/1.4867783
http://dx.doi.org/10.1016/j.cplett.2009.10.053
http://dx.doi.org/10.1103/PhysRevB.53.1814
http://dx.doi.org/10.1103/PhysRevB.53.1814
http://dx.doi.org/10.1088/0953-8984/22/2/023201
http://dx.doi.org/10.1103/PhysRevE.68.046707
http://dx.doi.org/10.1038/nature11770
http://dx.doi.org/10.1038/nature11770
http://dx.doi.org/10.1063/1.3466765
http://dx.doi.org/10.1063/1.3466765

