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Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small.
Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a
nonlinear scattering theory to answer this question for thermoelectric quantum systems, heat engines or
refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum
mechanics places an upper bound on both power output and on the efficiency at any finite power. The upper
bound on efficiency equals Carnot efficiency at zero power output but decays with increasing power output.
It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency
occurs when the system lets through all particles in a certain energy window, but none at other energies. A
physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.
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Introduction.—Quantum thermodynamics [1] is the
physics of thermodynamic processes in quantum systems,
such as the conversion of heat to work. This is of particular
interest for the thermoelectric response [2–4] of nano-
structures [5] or molecules [6,7]. It places fundamental
bounds on the efficiency and power output of heat engines
and refrigerators made from such systems, such as Carnot’s
thermodynamic bound on efficiency or Pendry’s quantum
bound on entropy flow [8].
The efficiencies of heat engines ηeng and refrigerators ηfri

are particularly important (ηfri is called the coefficient of
performance, COP). These efficiencies are the ratio of
power output to power input. For a heat engine, the output
is the electrical power Pgen and the input is the heat flow out
of a reservoir [the left (L) reservoir in Fig. 1(c)], JL. For a
refrigerator, it is the inverse. For left (L) and right (R)
reservoirs at temperatures TL and TR, Carnot’s bounds on
these efficiencies are

ηCarnoteng ¼ 1 − TR=TL; ηCarnotfri ¼ ðTR=TL − 1Þ−1; (1)

where heat flows as in Fig. 1, so TL > TR for heat engines
and TR > TL for refrigerators. Proposals exist to achieve
these efficiency in bulk [9] or quantum [10–12] systems.
However Carnot efficiency is only achieved in “reversible

systems,” which have vanishing power output. Any useful
devicemust give a finite poweroutput andsobe“irreversible.”
So what are the equivalents of Carnot efficiencies for such
irreversible (entropy-producing) systems?Tobemoreprecise,
we note that engineers typically need a device to provide a
certain power, at the highest possible efficiency. Thus,we ask,
what is the maximum allowed efficiency at any given power
output? As physicists, we can also ask what is the least
irreversible system(i.e., thatwhichproduces the least entropy)
that delivers a given power output? With a little algebra, the

first and second lawsof thermodynamics [13] tell us that a heat
engine producing powerPmust also produce entropy at a rate

_SðPÞ ¼ ðP=TRÞðηCarnoteng =ηeng − 1Þ: (2)

Similarly, a refrigerator with cooling power J has

_SðJÞ ¼ ðJ=TRÞð1=ηfri − 1=ηCarnotfri Þ: (3)

Thus, the two above questions are the same, since the most
efficient system is the least irreversible.
Central results.—We answer these questions for any

thermoelectric quantum system that can be modeled with
nonlinear Landauer-Büttiker scattering theory.

FIG. 1 (color online). Typical thermoelectric devices are shown
in (a) and (b), with (c) showing the quantum system with the
thermoelectric response. To unify the analysis, heat is always
taken to flow as shown; hence, a heat engine has TL > TR, while
a refrigerator has TL < TR. In (a) and (b), the filled (open) circles
are quantum systems where transport occurs via electron states
above the Fermi surface (hole states below the Fermi surface). In
(c), N is the number of transverse modes in the narrowest part of
the quantum system.
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First, we find that quantum mechanics places an upper
bound on the power output of such systems,

heat engine∶Pgen ≤ PQB2
gen ≡ A0

π2

h
Nk2BðTL − TRÞ2; (4)

refrigerator∶JL ≤
1

2
JQBL ≡ 1

12

π2

h
Nk2BT

2
L; (5)

where A0 ≃ 0.0321. We refer to PQB2
gen and JQBL as quantum

bounds (QBs), as they depend on the number of transverse
modes in the quantum system N, which scales like the
inverse Fermi wavelength. JQBL is Pendry’s quantum bound
on the heat current out of reservoir L [8]. The “2” on PQB2

gen

indicates that it is for two-lead systems [14].
Second, we find a fundamental upper bound on the

efficiencies at finite power output, which is lower than
Carnot efficiency. The upper bound for a heat engine is a
decaying function of Pgen=P

QB2
gen , whereas the upper bound

for a refrigerator is a decaying function of JL=J
QB
L . At small

output power, these bounds on efficiencies are

ηengðPgenÞ ¼ ηCarnoteng

 
1 − 0.478

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR

TL

Pgen

PQB2
gen

s !
; (6)

ηfriðJLÞ ¼ ηCarnotfri

 
1 − 1.09

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR

TR − TL

JL
JQBL

s !
; (7)

to lowest order in Pgen=P
QB2
gen and JL=J

QB
L , respectively. In

these limits, the least irreversible heat engine produces
entropy at a rate _S ∝ P3=2

gen , whereas the least irreversible

refrigerator does so at a rate _S ∝ J3=2L .
These fundamental upper bounds on efficiencies at finite

power are of quantum origin (they are wavelength depen-
dent), unlike Carnot’s bounds (which were derived using
classical physics). They play the role for irreversible
thermoelectric systems that Carnot’s bounds do for revers-
ible systems and are more stringent than Carnot’s bounds.
This upper bound on efficiency is achieved when only
particles in a given energy window (determined by the
desired power output) traverse the quantum system; see
Fig. 2(a). Real systems will have lower efficiencies;
improving them would only approach these bounds.
Nonlinear theory.—Linear-response theory works in

bulk systems for most TR=TL values [15], but a nonlinear
theory is needed for quantum systems whenever 1−TR=TL
is not small. An example would be getting electricity from a
thermoelectric between a diesel motor’s exhaust ≃700 K
and its surroundings ≃280 K [in which case the bound in
Eq. (4) is ∼10 nW per transverse mode].
Interactions are crucial in the nonlinear regime and

must be treated in a manner appropriate to the system in
question. Here, we use a nonlinear Landauer-Büttiker
scattering formula, which was first derived by treating

electron-electron interactions as mean-field charging effects
[16,17] and recently applied to thermoelectric effects
[18–20,26]. Identical equations apply for resonant level
models [10,21–24] and have been derived from functional
renormalization group (RG) [25] for such models with
single-electron charging effects. References [26,27] show
that such theories respect thermodynamics. The heat current
out of the L reservoir into the quantum system JL and the
electrical power generated by the system Pgen ¼ VIL are

JL ¼ 1

h

X
μ

Z
∞

0

dϵϵT μμ
RLðϵÞ½fμLðϵÞ − fμRðϵÞ�; (8)

Pgen ¼
1

h

X
μ

Z
∞

0

dϵμe−VT μμ
RLðϵÞ½fμLðϵÞ − fμRðϵÞ�; (9)

where e− is the electron charge (e− < 0). The sum is over
μ ¼ 1 for “electron” states above the L reservoir’s chemical
potential and μ ¼ −1 for “hole” states below that chemical
potential. Interaction effects mean that the transmission
function T μμ

RLðϵÞ is a self-consistently determined function
of TL;R and V. The Fermi function for electrons entering
from reservoir j is

fμj ðϵÞ ¼ f1þ exp½ðϵ − μe−VjÞ=ðkBTjÞ�g−1:

Scattering theory has been used to find the properties of
many thermoelectric systems from their T μμ

RLðϵÞ value, e.g.,
Refs. [6,12,18–25,28–37]. Here instead, we find the

FIG. 2 (color online). (a) Sketch of how the optimal trans-
mission changes as the required power output is increased.
Maximum power is when the right-hand edge of the boxcar
function goes to þ∞. The qualitative features always follow this
sketch, while the quantitative details depend on TR=TL. (b) Plots
of optimal Δ (solid curve) and e−V (dashed curve) against heat-
engine power output Pgen at TR=TL ¼ 0.1. The first equation in
Eq. (12) then gives ϵ0. (c) Plots of optimal Δ (solid curve) and
e−V (dashed curve) against cooling power JL at TR=TL ¼ 10.
The second equation in Eq. (14) then gives ϵ1.
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T μμ
RLðϵÞ that maximizes efficiency at given power output.

We initially assume only elastic scattering in the quantum
system, although decoherence without relaxation is allowed
as it does not change the structure of Eqs. (8) and (9).
Inelastic effects are briefly discussed at the end of this
Letter. We take each island (see Fig. 1) as large enough to
be a reservoir in local equilibrium. This differs from the
“three-terminal” systems [38–42], in which particles
remain coherent in the island. Here, we only discuss
electrons dominating transmission (filled circles in
Fig. 1). When holes dominate (open circles in Fig. 1),
one takes T μ;μ

RLðϵÞ → T −μ;−μ
RL ðϵÞ with V → −V, then IL →

−IL while JL and Pgen are unchanged.
Literature on reversibility and irreversibility.—To be

Carnot efficient, systems must be reversible (create no
entropy); for a thermoelectric, there are two requirements
for this [10]. First, it must have a δ-function-like trans-
mission [9,11,12] [Δ=ðkBTL;RÞ → 0 in Fig. 3(b)] for which
the figure of merit ZT → ∞. Second, the load resistance
must be such that e−V ¼ ϵ0ð1 − TR=TLÞ [10] so the
reservoirs’ occupations are equal at ϵ0. However, then
the power output vanishes, Pgen ∝ Δ2 → 0.
Larger Pgen requires heat engines that are irreversible

(create a finite amount of entropy per unit of work
provided). The authors of Ref. [24], motivated by works
on classical pumps [43–45], proposed increasing Pgen by
keeping Δ → 0 (ZT → ∞) but choosing the load to
maximize Pgen, rather than achieve reversibility. The
resulting Curzon-Alhborn efficiency is significantly below
ηCarnoteng , yet Pgen ∝ Δ remains very small. Other works on
finite power include Refs. [23,25,37,46].
Here, we get an efficiency higher than the Curzon-

Alhborn efficiency found in Ref. [24] for the same (or much
larger) Pgen by making Δ finite (thereby decreasing ZT).
Thus, ZT → ∞ does not give maximal efficiency at given
(finite) power output. That said, our work does not consider
ZT further, as it has little meaning outside the linear-
response regime [19,20,31,47].
Heat engine.—Here, we find the transmission function

T μμ
RLðϵÞ that maximizes the heat-engine efficiency

ηengðPgenÞ ¼ Pgen=JL for a given power generated Pgen.
We treat T μμ

RLðϵÞ as a set of slices as in Fig. 3(a) and find

optimal values of each slice and of the bias V under the
constraint of fixed Pgen. A little algebra shows that
ηengðPgenÞ will only grow with increasing τμγ , if ϵγ satisfies

½ϵγ − μe−VJ0L=P
0
gen�∂Pgen=∂τμγ jV < 0; (10)

where the prime symbol indicates ∂=∂V for fixed T μμ
RLðϵÞ.

From this, the optimal T μμ
RLðϵÞ is a boxcar function

[Fig. 3(b)],

T μμ
RLðϵÞ ¼

�
N for μ ¼ 1 and ϵ0 < ϵ < ϵ1

0 otherwise
(11)

where N is given in Fig. 1(c). Then the integrals in Eqs. (8)
and (9) are sums of terms containing logarithmic and
dilogarithm functions of ϵ0 and ϵ1. Equation (10) gives

ϵ0 ¼ e−V=ð1 − TR=TLÞ; ϵ1 ¼ e−VJ0L=P
0
gen: (12)

Since JL and Pgen depend on ϵ1, the second equality is a
transcendental equation for ϵ1. Solving this, we get JLðVÞ
and PgenðVÞ and so ηðVÞ. To get ηðPgenÞ from ηðVÞ, we
invert PgenðVÞ and substitute for V. Below, we do these
steps analytically for high power (Pgen ¼ PQB2

gen ) and low
power (Pgen ≪ PQB2

gen ). For other cases, a numerical solution
is plotted in Figs. 2(b) and 4(a).
The quantum bound on power output, given in Eq. (4), is

found by noting that the maximum occurs when
P0
gen ¼ dPgen=dϵ1 ¼ 0. For this ϵ1 → ∞, so T μμ

RLðϵÞ is a
Heaviside θ-step function, while e−ϵ0=ðkBTLÞ ≃ 0.318. The
efficiency at this maximum power is

FIG. 4 (color online). Efficiencies of (a) heat engines and (b)
refrigerators. The black lines are the maximum allowed efficiency
for various power outputs as functions of TR=TL. The light green
regions indicate allowed efficiencies for those power outputs.

FIG. 3 (color online). Finding the T μμ
RLðϵÞ function that

maximizes the efficiency. In (a) T μμ
RLðϵÞ is considered as

infinitely many slices of width δ → 0, so slice γ has energy
ϵγ ≡ γδ and height τμγ . This gives (b) with a transcendental
equation for ϵ0 and ϵ1.
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ηengðPQB2
gen Þ ¼ ηCarnoteng =½1þ C0ð1þ TR=TLÞ�; (13)

with C0 ≃ 0.936, so it is always more than 0.3ηCarnoteng .
For low power output, one can take Eqs. (8) and (9) with

Eq. (11) and easily perform a small Δ expansion up to
order ðΔ=kBTRÞ3. In this limit, Eq. (12) is satisfied by
ϵ0 ¼ 3.2436kBTL. Similarly, taking Pgen to lowest order in
Δ, we rewrite η in terms of Pgen to get Eq. (6).
Refrigerator.—A refrigerator’s efficiency, or COP, is

ηfriðJLÞ ¼ JL=Pabs, where Pabs ¼ −Pgen is the electrical
power absorbed by the refrigerator. We maximize ηfriðJLÞ,
for given cooling power JL. This gives the boxcar function
in Eq. (11) with

ϵ0 ¼ −e−VJ0L=P0
abs; ϵ1 ¼ −e−V=ðTR=TL − 1Þ; (14)

so ϵ0 is given by a transcendental equation. This is solved
below analytically at high and low JL values; otherwise, the
numerical results are given in Figs. 2(c) and 4(b).
The quantum bound on cooling power in Eq. (5) occurs

when the transmission function is a θ-step function (ϵ0 ¼ 0,
ϵ1 → ∞, and −e−V → ∞). Then, ηfriðJLÞ is zero, since V is
infinite. However, one gets exponentially close to this
limit for −e−V ≫ kBTR, for which ηfriðJLÞ is finite [see
Fig. 4(b)]. In the opposite limit, JL ≪ JQBL , an expansion up
to third order in Δ=ðkBTLÞ gives Eq. (7).
Phonons and photons.—These unavoidably carry heat

from hot to cold in parallel with the electronic flow. Their
heat current Jph depends nonlinearly on TL;R (given by a
Stefan-Boltzmann law or similar [8,48,49]). Then, maximal
efficiencies for heat engines and refrigerators are sup-
pressed and given by

ηeþph
eng ðPgenÞ ¼ ½η−1engðPgenÞ þ Jph=Pgen�−1;

ηeþph
fri ðJ − JphÞ ¼ ð1 − Jph=JÞηfriðJÞ for J > Jph;

where ηengðPgenÞ, ηfriðJÞ are efficiencies at Jph ¼ 0.
In many devices, there is a large phonon or photon heat

flow Jph. For a heat engine in a situation where
Jph ≫ ηengPgen, one has ηeþph

eng ðPgenÞ ¼ Pgen=Jph. Thus,
the efficiency is maximal when the power is maximal,
as given by Eq. (4). For a refrigerator to cool, it needs
J − Jph > 0, so one may need the maximum cooling power
in Eq. (5) when Jph is large. In both cases, this corresponds
to a θ-step transmission function.
Inelastic effects.—Inelastic electron-phonon and electron-

electron interactions in the quantum system are not
accounted for in the above theory. However, they will be
negligible if the quantum system is small enough. At 700 K,
electrons typically travel tens of nanometers before an
inelastic scattering, so if the quantum system is a few
ångstroms across, inelastic effects may be insignificant.
Below 1 K, electrons can traverse microsized structures
without inelastic scattering. We will address inelastic effects
in detail elsewhere [50] using a voltage-probe model [51].

We will show that they cannot increase the maximum power
beyond that in Eqs. (4) and (5). For low powers, wewill show
that they cannot increase the maximum efficiencies beyond
those in Eqs. (6) and (7). For intermediate powers, it remains
open whether they could raise the maximum efficiency;
however, there is no reason to think so.
Many quantum systems in parallel.—Increasing the

number of modes N increases the efficiency at given power
output. This is because the quantum bounds in Eqs. (4) and
(5) go like N, and the efficiency goes toward Carnot
efficiency as these bounds grow.
However, most thermoelectric quantum systems have

N ∼ 1 (exceptions being superconductor–normal-
metal–superconductor structures [5]). Then, large N values
would require many N ¼ 1 systems in parallel. For a surface
covered with a certain density of such systems [12], Eqs. (4)
and (5) become bounds on the power per unit area. Carnot
efficiency is only approachable when the power per unit area
is much less than these bounds. The number of modes per
unit area cannot exceed λ−2F , for Fermi wavelength λF. Thus,
Eq. (4) tells us that to get 100 W of power output from a
semiconductor thermoelectric (with λF ∼ 10−8 m) between
reservoirs at 700 and 300 K, one needs a cross section of at
least 4 mm2. To get this power at 90% of Carnot efficiency,
one needs a cross section of at least 0.4 cm2. Remarkably, it
is quantum mechanics which gives these bounds, even
though the cross sections in question are macroscopic.
Concluding remark on implementation.—Whenever

(1 − TR=TL) is not small, the transmission function for a
system must be found self-consistently to capture charging
effects. This work has shown that maximum efficiency for
given power output occurs when this transmission is a
boxcar function (with correct position and width). Figure 5
shows one potential implementation; the energy levels
should be chosen so that they align at energy E0 when
the optimal bias is applied. To get maximum power output
is simpler, since a good point contact has the required
θ-step function transmission.

I thank M. Büttiker for proposing a band as a candidate
for the boxcar transmission.

FIG. 5 (color online). Chain of systems with levels at energy E0

and hoppings ftig that will hybridize to form a band centered at
E0, with a width given by the hopping. If the hoppings are
smallest at the chain’s middle and larger at its ends [50], the
transmission becomes increasingly like a boxcar function as one
increases k (the bandwidths in the plots have been set to 1).
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