
Hardness of Classically Simulating the One-Clean-Qubit Model

Tomoyuki Morimae,1,* Keisuke Fujii,2,3,† and Joseph F. Fitzsimons4,5,‡
1ASRLD Unit, Gunma University, 1-5-1 Tenjin-cho Kiryu-shi Gunma-ken, 376-0052, Japan

2The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302, Japan
3Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

4Singapore University of Technology and Design, 20 Dover Drive, 138682, Singapore
5Center for Quantum Technologies, National University of Singapore, Block S15, 3 Science Drive 2, 117543, Singapore

(Received 20 January 2014; published 2 April 2014)

Deterministic quantum computation with one quantum bit (DQC1) [E. Knill and R. Laflamme, Phys.
Rev. Lett. 81, 5672 (1998)] is a model of quantum computing where the input is restricted to containing a
single qubit in a pure state and has all other qubits in a completely mixed state. Only the single pure qubit is
measured at the end of the computation. While it is known that DQC1 can efficiently solve several
problems for which no known classical efficient algorithms exist, the question of whether DQC1 is really
more powerful than classical computation remains open. In this Letter, we introduce a slightly modified
version of DQC1, which we call DQC1k, where k output qubits are measured, and show that DQC1k
cannot be classically efficiently simulated for any k ≥ 3 unless the polynomial hierarchy collapses at the
third level.
DOI: 10.1103/PhysRevLett.112.130502 PACS numbers: 03.67.Ac, 89.70.Eg

While large scale universal quantum computers may be
many years off, several intermediate models of quantum
computation have been discovered which may prove
significantly easier to implement in practice. These inter-
mediate models of computation do not offer the full
potential of universal quantum computation, but are, none-
theless, believed to be hard to simulate classically.
Motivated by nuclear magnetic resonance (NMR) quantum
information processing, Knill and Laflamme [1] proposed a
restricted model of quantum computing, known as deter-
ministic quantum computation with one quantum bit
(DQC1), or the one clean qubit model. As is shown in
Fig. 1(a), a DQC1 circuit consists of the input state in a
highly mixed state which is acted upon by a number of
quantum gates polynomial in the size of the input, followed
by a computational basis measurement of the first qubit.
The initial state of the system is given by ρðnþ1Þ

in ≡ j0ih0j ⊗
ðI=2Þ⊗n where I is the two-dimensional identity operator.
We call this state “the highly mixed input state.” Naively,
one might expect this model to be easy to simulate
classically, since any time evolution of a single qubit state
can be trivially simulated efficiently by a classical com-
puter, and the completely mixed state seems to lack
“quantumness,” due to a lack of entanglement and discord.
However, the surprising result of Ref. [1] is that DQC1 can
efficiently solve certain problems for which no efficient
classical algorithms are known. For example, the quantum
circuit represented in Fig. 1(b) can be used to estimate the
normalized trace of any n-qubit unitary operator U [1], a
problem which is complete for the class of decision
problems answerable within this model with bounded error
[2]. This is possible due, in part, to the fact that, while
entanglement remains bounded in DQC1 circuits, the

interaction between the mixed register and the pure qubit
leads to the presence of significant nonclassical correla-
tions [3,4].
While it does not seem that this model supports universal

quantum computation [5], it can efficiently solve problems
for which no efficient classical algorithm is known, such as
spectral density estimation [1], testing integrability [6],
calculation of fidelity decay [7], and approximation of the
Jones and HOMFLY polynomials [8–10]. An algorithm for
approximating an invariant of three-manifolds was also
proposed [11]. Since the estimation of the normalized trace
of a unitary matrix seems to be hard for classical computers
[12], and DQC1 does not seem to be universal, the DQC1
model appears to represent a model of computation
which is intermediate classical and universal quantum
computation.
Although the presence of nontrivial quantum discord and

entanglement within DQC1 circuits is seen as an indication
that the trace of n-qubit unitary matrix is classically hard to
compute [3,12], ruling out many classical approaches to
simulation [4], it is an open problem whether DQC1 really

(a) (b)

FIG. 1. The one clean qubit model. (a) A circuit of the DQC1
model, (b) a circuit of the DQC1 model whose output can evaluate
TrðUÞ, for which classical efficient algorithm is not known. All
measurements are assumed to be in the computational basis.
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represents a more powerful model than purely classical
computation. In this Letter, we show that a slightly
modified version of DQC1, which we call DQC1nþ1, is
hard to be classically efficiently simulated unless the
polynomial hierarchy (PH) collapses at the third level.
The DQC1nþ1 model is equivalent to the DQC1 model
except that all nþ 1 output qubits (instead of the single
qubit) are measured at the end of the computation (see
Fig. 2). We shall show that this result hardness holds even if
we consider measurements on only a constant number of
output qubits. Thus, we demonstrate an inextricable link
between the computational hardness of simulating circuits
with one clean qubit and a widely accepted conjecture from
computational complexity theory. PH is a natural way
of classifying the complexity of problems (languages)
beyond the usual NP (nondeterministic polynomial time,
which includes “traveling salesman” and “satisfiability”
problems). It is strongly believed in computer science that
NP includes nonpolynomial-time problems. Similarly,
there is a weaker, but still solid belief that PH does not
collapse.
Our argument is based on the seminal results by Terhal

and DiVincenzo [13], Bremner, Jozsa, and Shepherd [14],
and Aaronson and Arkhipov [15]. These papers introduced
models of quantum computing that are not universal but
cannot be classically efficiently simulated unless some
plausible assumptions in computer science are violated.
The essential idea behind all of these results is that, when
postselected, some superficially naive circuits can simulate
universal bounded error quantum polynomial time compu-
tation (BQP) or postselected universal bounded error
quantum polynomial time computation (post-BQP). In this
context, postselection means the (fictitious) ability to
project onto a specific branch of the wave function with
unit probability. Therefore, if the probability distributions
of the outputs of such naive circuits can be classically
efficiently simulated, this means that the classical computer
with a postselection can also efficiently simulate BQP or
post-BQP circuits, which violate certain strongly believed
conjectures in computer science.
Using such an approach, Terhal and DiVincenzo [13]

showed that it is hard to simulate quantum circuits with
depth four. They derived the result by noticing the fact that
nonadaptive Gottesman-Chuang quantum circuits [16] can
be written with depth-four circuits. Bremner, Jozsa, and
Shepherd [14] showed that a class of quantum circuits
known as instantaneous quantum polynomial-time (IQP)

circuits [17] cannot be classically efficiently simulated
unless PH collapses at the third level. An n-qubit IQP
circuit is a circuit that consists of the input state j0i⊗n, a
polynomial number of mutually commuting quantum gates,
and computational-basis measurement on all n output
qubits at the end of the computation. Each of the quantum
gates in this model can be assumed to be of the form
Dðθj; SjÞ≡ exp½iθj ⊗n

k¼1 X
skj
k �, where θj ∈ R, Xk is the

Pauli X operator acting on the kth qubit, and
Sj ≡ ðs1j ;…; snj Þ ∈ f0; 1gn. What Bremner, Jozsa, and
Shepherd showed was that postselected IQP circuits can
simulate post-BQP circuits. By combining this with a
previous result of Aaronson [18], that post-BQP ¼ PP
(probabilistic polynomial time), they concluded that if
IQP circuits can be classically efficiently simulated, PH
collapses at the third level. Finally, Aaronson and Arkhipov
[15] showed a hardness proof for classical simulations
given of noninteracting bosons [19] which made use of
probabilistic entangling gates due to Knill, Laflamme, and
Milburn [20], to show that such systems can simulate BQP
circuits, and, hence, post-BQP circuits, if the postselection
is possible on the occupancy of modes [21].
Here, we make use of a similar approach. We show that if

postselections of the measurement results are possible,
DQC1nþ1 can simulate post-BQP circuits. Then, by using
the fact that post-BQP ¼ PP, we conclude that if DQC1nþ1

can be efficiently classically simulated, the polynomial
hierarchy collapses at the third level.
Before proceeding to the proof of our results, we first

clarify what we mean by classically efficient simulation.
We adopt the definition used by Bremner, Jozsa, and
Shepherd [14]. (They call the definition “weakly” simu-
latable with multiplicative error c ≥ 1. But, in this Letter,
we sometimes omit the word “weakly” for simplicity, since
we consider only this definition.) For any uniform family of
circuits fCwg [22], let Pw be the output probability
distribution of Cw. Let us assume that we perform computa-
tional-basis measurements on the k output qubits of each of
a uniform family of quantum circuits. Let Pwðm1;…; mkÞ
be the probability of obtaining measurement result
ðm1;…; mkÞ ∈ f0; 1gk. We say that the family is (weakly)
simulatable with multiplicative error c ≥ 1 if, for any
marginal distribution Pwðx1;…; xrÞ of Pwðm1;…; mkÞ,
there exists a (family of) probability distributions P0

w such
that it can be sampled classically in a polynomial time, and
for all variables and w we have

1

c
Pwðx1;…; xrÞ ≤ P0

wðx1;…; xrÞ ≤ cPwðx1;…; xrÞ.

(Note that the circuit size is included in the input
complexity.)
We now give a more precise definition of our model. A

DQC1k circuit consists of the highly mixed input state
ρðnþ1Þ
in , to which a polynomial number of quantum gates
chosen from a discrete approximately universal gate set are

FIG. 2. A circuit of the DQC1nþ1.
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applied, followed by measurement of k labeled qubits in the
computational basis. Clearly, then, DQC1 is equivalent to
the special case of k ¼ 1. At the opposite extreme, as is
shown in Fig. 2, the DQC1nþ1 model is equivalent to the
DQC1 model except that all output qubits are measured at
the end of the computation.
With this definition in place, we can now make a precise

statement of our main result: if DQC1nþ1 is classically
simulatable with multiplicative error 1 ≤ c <

ffiffiffi

2
p

, then PH
collapses at the third level. Further, this result can be refined
to show that the same result holds if DQC1nþ1 is replaced
by DQC13.
In order to prove these claims, we begin by clarifying the

definition of postselected computation classes [14]. A
language L is in the class post-X if and only if there exists
an error tolerance 0 < δ < 1

2
and a uniform family of

postselected circuits (in the type specified by X, such as
BQP, IQP, etc.) with a specified single (qu)bit output
register Ow (for the L-membership decision problem)
and a specified multi(qu)bit “postselection register”
Pw [23] such that: (1) if w ∈ L, then
ProbðOw ¼ 1jPw ¼ 0…0Þ ≥ 1

2
þ δ, and (2) if w∉L, then

ProbðOw ¼ 1jPw ¼ 0…0Þ ≤ 1
2
− δ. For post-BQP, the

specification X is the set of universal quantum circuits
starting with input fixed as j0i⊗n. Similarly, for a post-
selected universal bounded error probabilistic polynomial
time computation (post-BPP), it is the set of randomized
classical circuits with input fixed in the zero state, and for
post-DQC1k, it is the set of DQC1k circuits, i.e., the highly

mixed input state ρðnþ1Þ
in , a polynomial number of quantum

gates on it, and the measurement of k labeled qubits in the
computational basis.
As discussed earlier, it has previously been established

that post-BQP ¼ PP [18]. Furthermore, a nontrivial con-
tainment for post-BPP is known. Let PH denote the
polynomial hierarchy: the union of an infinite hierarchy
of classes ΣkP, ΔkP, and ΠkP for (k ¼ 0; 1; 2;…) where
Σ0P ¼ Δ0P ¼ Π0P ¼ P and Σkþ1 ¼ NPΣkP, Δkþ1P ¼ PΣkP,
and Πkþ1 ¼ co-NPΣkP. It is known that Ppost-BPP⊆Δ3P [14],
and PH⊆PPP [24].
We now proceed to show that post-DQC1nþ1 ¼

post-BQP. First, post-DQC1k⊆post-BQP is easy to show
for any k since the mixed-state input can be simulated with
BQP circuits by adding ancilla qubits and entangling them
with qubits used in the computation, to leave the reduced
system in the same mixed state as used for DQC1k. Hence,
post-DQC1nþ1⊆post-BQP. Next, we show the opposite
containment, post-DQC1nþ1⊇post-BQP. Let us consider
an n-qubit cluster state jGi, which is a universal resource
state for the measurement-based quantum computing [25].
Consider the DQC1nþ1 circuit (shown in Fig. 3) with the
gate ðI ⊗⊗n

j¼1 VjÞW, where Vj is any single-qubit unitary
gate, and W ≡ X ⊗ jGihGj þ I ⊗ ðI⊗n − jGihGjÞ. The
unitary operator W can be uniformly generated

since the m-controlled Toffoli gate, j0ih0j⊗m ⊗ Xþ
ðI⊗m − j0ih0j⊗mÞ ⊗ I, can be uniformly generated without
requiring any ancilla qubits [26], and a unitary trans-
formation that takes j0…0i to a cluster state can be
uniformly generated without requiring any ancilla
qubits. The state after the application of W
is 1

2n
j1ih1j ⊗ jGihGj þ 1

2n
j0ih0j ⊗ ðI⊗n − jGihGjÞ.

Therefore, if we postselect on the first qubit being in state
j1i, we obtain the n-qubit cluster state jGi. Generally,
measurement based computation requires that adaptive
single qubit measurements be made based on previous
measurement outcomes in order to achieve deterministic
quantum computation. However, since we are allowing for
postselection, by postselecting measurement outcomes on
one for nonoutput qubits, it is possible to fix the meas-
urement bases before beginning the computation, and
hence, postselection combined with the circuit in Fig. 3
is sufficient to implement postselected BQP circuits with
only polynomial overhead, and so post-DQC1nþ1⊇
post-BQP.
Finally, we show that the classical simulatability of

DQC1nþ1 leads to post-DQC1nþ1⊆post-BPP, following
the argument of Bremner, Jozsa, and Shepherd. Assume that
DQC1nþ1 is simulatable with multiplicative error c ≥ 1. Let
(Ow, Pw) and (O0

w, P0
w) denote the output and postselection

registers for postselectedDQC1nþ1 circuits and postselected
randomized classical circuits, respectively. Then,

ProbðO0
w ¼ xjP0

w ¼ 0…0Þ ¼ ProbðO0
w ¼ x; P0

w ¼ 0…0Þ
ProbðP0

w ¼ 0…0Þ
≥

1

c2
ProbðOw ¼ xjPw ¼ 0…0Þ;

and

ProbðO0
w ¼ xjP0

w ¼ 0…0Þ ¼ ProbðO0
w ¼ x; P0

w ¼ 0…0Þ
ProbðP0

w ¼ 0…0Þ
≤ c2ProbðOw ¼ xjPw ¼ 0…0Þ.

Let us assume that a language L is in post-DQC1nþ1.
Then, (1) if w ∈ L, then ProbðO0

w ¼ 1jP0
w ¼ 0…0Þ ≥

1
c2 ð12 þ δÞ, (2) if w∉L, then ProbðO0

w ¼ 1jP0
w ¼ 0…0Þ ≤

c2ð1
2
− δÞ. If c <

ffiffiffi

2
p

, L is necessarily in post-BPP. (Note

FIG. 3. A circuit of the DQC1nþ1 model which implements
postselected measurement based quantum computation.
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that it is assumed that δ can be made arbitrarily close to 1=2.
It is proved by noticing the equivalence between post-
DQC1nþ1 and post-BQP, and the coherent amplification of
BQP acceptance probabilities). This would imply that
post-DQC1nþ1⊆post-BPP, and hence, Δ3P⊇Ppost-BPP ¼
PPP⊇PH, which shows the collapse of PH at the third
level. Hence, we have shown that the classical simulat-
ability of DQC1nþ1 leads to the collapse of PH at the
third level.
We now turn our attention to the case where measure-

ments are available only on some constant number of
output qubits. This more accurately reflects the situation in
NMR experiments, as the DQC1 model was originally
proposed to model. In order to show that
post-BQP⊆post-DQC13, we consider the circuit shown
in Fig. 4. Taking W0 ¼ X ⊗ j0ih0j ⊗ jGihGj þ I ⊗ ðI−
j0ih0j ⊗ jGihGjÞ, the state after applying W0 and selecting
on the first qubit being in the state j1i is j0i ⊗ jGi, which is
the same as in the previous proof with the addition of an
ancilla qubit initialized to j0i. As before, the local unitaries
fVig are used to align the local measurements which drive
the computation with the computational basis. However,
rather than directly measure each nonoutput qubit, the
multiply controlled Toffoli gate is used to compute the
logical AND of these outcomes on the ancilla qubit. Thus,
rather than postselecting on a particular string of outcomes,
it suffices to postselect on the single ancilla bit in order to
implement any postselected quantum circuit. Finally the
output qubit must be measured in order to determine the
result of the computation. Thus, only three measurements,
with postselection on two of the output bits is necessary in
order to implement postselected quantum circuits, and
hence, post-BQP⊆post-DQC13. Following our previous
argument, if DQC13 were classically simulatable with a
multiplicative error less than

ffiffiffi

2
p

, then post-BQP ¼
post-DQC13⊆post-BPP, and hence, PH would collapse
at the third level.
In this Letter, we have shown that classical efficient

simulation of DQC1k for any k ≥ 3 is impossible unless PH
collapses at the third level. While we have derived this
result using the measurement based model, we note that our
results can also be recast in terms of the circuit model [27].
The ultimate goal is, of course, to show the impossibility of
a classical efficient simulation of DQC1. However, there is
a link between these two problems. Shor and Jordan [8]
showed that the probability of obtaining the all zero string
result for a DQCkk circuit, where there are k pure qubits
which can be measured, is equal to the probability of
obtaining the zero result for a DQC1 circuit for trace
estimation. Here, we have shown that DQC13 is hard to
classically simulate, and the Shor-Jordan result seems to
indicate that the output bit of DQC1 somehow “contains”
the hard result of DQC13. While their result does not
directly extend the postselection argument to DQC1 cir-
cuits with a single measurement, it does show a tantalizing

link between the problems, and hence, we are lead to
conjecture that the result we present here can be extended to
DQC1 circuits with only a single measurement. Such a
result would be a major step toward resolving the computa-
tional power of DQC1 circuits.
We also note here that the notion of approximate

sampling used in the present Letter (which is also the
one used in Refs. [14,15]) is artificially strong. The natural
notion of classical simulation is to sample from a proba-
bility distribution of 1=poly total variation distance from
the output distribution of the device being simulated. It is
an important open problem to prove that classical sam-
plings with that natural error bound for a one clean qubit
model (or other models [14,15]) would violate some
plausible computational complexity assumptions. Finally,
we mention that due to the postselected nature of the proof
technique, we still do not know of a nonpromise problem
solvable in probabilistic polynomial time by DQC1k and
plausibly not in classical probabilistic polynomial time.
Furthermore, it is not known whether the DQC1k is fault
tolerant, and it seems to be not.
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