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We present direct numerical simulations of the coupled Poisson-Nernst-Planck and Navier-Stokes
equations for an electrolyte around a polarizable cylinder subject to an external electric field. For high
fields, a novel chaotic flow phenomenon is discovered. Our calculations indicate significant improvement
in the prediction of the mean flow relative to standard asymptotic models. These results open possibilities
for chaos-enhanced mixing in microdevices and provide insight into barriers to efficient electrokinetic
micropumps with broad applications in electrochemical and lab-on-a-chip systems.
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Induced-charge electro-osmosis (ICEO) refers to flows
driven by electrostatic forces arising from the action of an
applied electric field on free charge induced by the field
itself in microscopically thin boundary layers on the surface
of a polarizable object [1,2]. Within the last decade, ICEO
has received considerable attention as a means for mixing
and pumping in microfluidic lab-on-a-chip systems, which
are typically used for biochemical analysis [3].
In the late 1990s, Ramos and co-workers discovered ac

electro-osmosis [4], a variant of ICEO used for pumping in
microchannels. Some years later, a more general theoretical
description of ICEO, including both ac and dc variants, was
developed by Bazant and Squires [5,6]. Figure 1 presents a
canonical ICEO problem showing an ideally polarizable
cylinder fixed in a binary aqueous electrolyte. An external
electric field Eb drives ions in the bulk and polarizes the
cylinder, which in turn leads to the formation of a surface
charge and screening electric double layers (EDLs) on the
cylinder. Ignoring surface conduction and assuming uni-
form bulk conductivity, Bazant and Squires computed the
tangential electric field outside of the EDLs to be
Eθ ¼ −2Eb sinðθÞ. Given the fixed potential of the cylin-
der, the induced zeta potential across the thin EDLs was
computed to be ζ ¼ 2Eba cosðθÞ. Using the Helmholtz-
Smoluchowski relation [7], they predicted that the tangen-
tial field acting on the EDL should lead to an induced slip
velocity with quadratic dependence on the electric field
U ∼ E2

b. The quadratic dependence of the induced flow in
ICEO offered promising advantages over linear electro-
osmotic flow systems, namely, flow rates faster than linear
electro-osmosis at high voltages and a net flow even under
ac forcing, thus avoiding electrode reactions or bubble
formation.
However, after recent comparisons with experimental

measurements, it became clear that ICEO velocities in
practice are lower than those predicted by the weakly
nonlinear asymptotic model of Bazant and Squires [5].
Particularly at high voltages, the discrepancy can be up to

an order of magnitude [8–11], almost neutralizing the
advantage of the quadratic scaling of ICEO velocities
and leaving open the question of whether ICEO or linear
electro-osmosis is a more efficient means of generating
microscale flows.
To explain this discrepancy, several modifications have

been proposed. The majority of the papers in the literature
have attributed the differences to noncontinuum effects [12]
and have attempted to provide better fits to the experi-
mental data by invoking models taking into account
corrections such as the Stern layer and ion packing near
the surface [13]. However, to capture the correct magnitude
of ICEO velocities, these models have resorted to unphys-
ical choices of tunable parameters such as Stern layer
thicknesses or ion volumes at least an order of magnitude
too large [10,13]. Most recently, asymptotic models [14]
and numerical simulations [15] have been developed to
take into account effects of surface conduction and bulk
concentration polarization. These models, however, only
solve steady equations, thereby mathematically eliminating
the possibility of flow instability and unsteadiness.
In this Letter, we present direct numerical simulations

(DNS) of the ICEO phenomenon through solution of the

FIG. 1 (color online). Schematic of key elements of ICEO in a
binary electrolyte around an ideally polarizable cylinder subject
to an external electric field Eb. (a) Low field. (b) High field.
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Navier-Stokes and Poisson-Nernst-Planck equations. Our
simulations resolve the thin EDLs and fast bulk charge-
relaxation time without resorting to any asymptotic sim-
plification. We show that at large fields, ICEO presents
nonlinear and chaotic dynamics with Oð1Þ spatiotemporal
fluctuations in all variables. The effect on the time-
averaged kinematics is a retardation of the flow velocity,
and our finding therefore offers an explanation for the
discrepancy between theory and experiment in ICEO
without resorting to any tunable parameter. We study the
canonical ICEO system of an infinitely long 2D metallic
cylinder in an aqueous binary electrolyte subject to an
applied dc electric field. We have performed other pre-
liminary studies that confirm that chaotic dynamics also
exist in ac fields. While the present results from our dc-
forced DNS succinctly capture the basic picture of chaotic
ICEO, we defer a presentation of more elaborate ac-forced
DNS to a future publication with a wider scope.
Basic physical picture.—Figure 1 depicts the basic

mechanism of the electro-osmotic flow due to an induced
charge on a polarizable cylinder. The figure contrasts two
scenarios involving low and high electric fields, with the
key difference being the relative importance of surface-
conduction-induced concentration polarization [7].
Surface conduction describes current carried by the

excess ions in the EDL and is quantified in dimensionless
form by the Dukhin number Du [7]. In the low-field limit,
one can show that Du scales as E2

b, and, as discussed by
Squires and Bazant [6], surface conduction can be safely
ignored. However, as the external field increases, the
relative effect of surface conduction becomes increasingly
important due to the higher charge stored in the EDLs.
As shown in Fig. 1(b), this tangential transport of counter-
ions needs to be supplied from the neutral bulk via a flux
normal to the EDL [16]. This selective intake of counter-
ions normal to the surface leads to the concentration-
polarization phenomenon [7,17] defined by ion depletion
near the ion-absorption interfaces (θ ¼ 0°, 180°) and ion
enrichment near the ejection interfaces (θ ¼ �90°) [16].
In the high voltage limit, concentration-polarization

depletion can lead to the formation of a nonequilibrium
charged layer between the EDL and the electroneutral bulk
called the extended space charge region (ESC) [17–20].
Transport and dynamics of ESC has been long studied
in the context of ion-selective membrane science.
These theoretical and experimental studies confirm that
the ESC can be hydrodynamically unstable [21–25].
Particularly, our recent study presents the first DNS
of concentration-polarization-induced chaos next to ion-
selective membranes [26]. Figure 2 shows the charge
density field and the concentration boundary layer structure
just below the onset voltage of instability. Figure 2(b)
shows that for Eba of 30 thermal volts, a thick extended
space charge region is developed between the classically
known EDL and electroneutral bulk regions. Next, we

describe how the presence of charge away from the wall
due to the ESC can lead to a positive feedback mechanism
sustaining the instability. The inset of Fig. 2(b) shows a
clockwise-rotating hypothetical vortex near the ESC with
the corresponding perturbations to the salt concentration
field. For this qualitative argument, we track only one
isocontour of concentration. The high-concentration zone,
due to its low Ohmic resistance, is expected to have a
relatively more uniform potential, and thus a smaller
electric field, which we neglect. Given the upward back-
ground field, we examine the circulation of the electric field
around the test loop indicated by the dashed square. Since
this circulation must be zero, a tangential field must be
induced from left to right close to the surface. This
tangential field acts on the negatively charged ESC,
producing a body force in a direction amplifying the
hypothetical vortex. For sufficiently large fields, this feed-
back loop can overcome viscous dissipation and lead to
overall growth of the perturbing vortices. The role of the
ESC is crucial in the sense that it provides charge well into
the bulk.
Governing equations.—Our starting point is the incom-

pressible Navier-Stokes and Poisson-Nernst-Planck equa-
tions for a symmetric binary electrolyte in the dilute limit

ρ

�∂v
∂t þ ðv ·∇Þv

�
¼ −∇pþ μ∇2vþ ρeE; (1a)

∇ · v ¼ 0; (1b)

∂c�
∂t þ v · ∇c� ¼ D∇ · ð∇c� � V−1

T c�∇ϕÞ; (1c)

−ε∇2ϕ ¼ ρe; (1d)

in which v, p, cþ, c−, and ϕ are the fluid velocity,
hydrodynamic pressure, cation concentration, anion

FIG. 2 (color online). Results from a stable solution for
Eba=VT ¼ 30 showing (a) a contour plot of the charge density
(negative ¼ blue, positive ¼ red), and (b) anion and cation
concentration versus radial distance along the dashed line
indicated in (a). The inset is a zoomed schematic on the area
indicated by the rectangle in (a) showing a hypothetical vortex
and the resulting perturbation to the concentration contours.
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concentration, and electrostatic potential, respectively.
Moreover, E ¼ −∇ϕ is the electric field, ρe¼
zeðcþ−c−Þ is the free charge density, and ρ, μ, D,
VT ¼ kBT=ðzeÞ, ε, and z are the fluid mass density, fluid
viscosity, ionic diffusivity, thermal voltage, dielectric per-
mittivity, and ionic valence, respectively. Finally, e, kB, and
T are the elementary charge, Boltzmann constant, and
temperature, respectively.
These equations are solved in 2D around a metallic

cylinder. The boundary conditions on the cylinder (r ¼ a)
are no flux, no slip, no penetration, and fixed potential. In
the far field, we enforce fixed concentration cþ ¼ c− ¼ c0,
zero flow, and uniform electric field Eb. The typical domain
size is taken to be ≈100a to ensure independence of the
results from the boundary location.
The dimensionless parameters of the problem are the

electrohydrodynamic coupling constant κ ¼ εV2
T=ðμDÞ,

the Schmidt number Sc ¼ μ=ðρDÞ, the dimensionless
applied field Eba=VT , and the dimensionless Debye length
ϵ ¼ λD=a, where λD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εkBT=½2ðzeÞ2c0�

p
is the dimen-

sionful Debye length.
In this Letter, we consider κ ¼ 0.5 and Sc ¼ 1000 con-

sistent with typical aqueous electrolytes. The applied field is
varied from Eba=VT ≪ 1 up to 50. ϵ is taken to be equal to
ϵ ¼ 10−3 (e.g., representing a 20–μm-diameter cylinder in
a 1-mM electrolyte).
The governing equations are solved using second-order

finite differences in cylindrical coordinates on a staggered
mesh. To this end, we have developed a specialized parallel
code with several features, including nondissipative
numerical advection and use of fast Fourier transforms
for fast solution of the elliptic equations. Furthermore, we
have verified that the nonlinear inertial term ðv ·∇Þv in the
Navier-Stokes equation (1a) is negligible due to the small
Reynolds number of the flow, and we have neglected this
term in the computations. The accuracy of our numerical

algorithm has been extensively verified using the method of
manufactured solution against a class of generalized exact
solutions capable of verifying the second-order accuracy of
all terms [26,27]. The numerical mesh consists of 768
points uniformly spaced in the azimuthal direction and 400
mesh points in the radial direction, with the smallest mesh
size equal to 10−5a on the surface (sufficient to resolve the
EDL) and gradually stretched away from the cylinder with
a uniform stretching factor of ≈3%.
Results.—Our DNS calculations indicate that instability

andchaoscandevelopin ICEOwithasignificant impacton the
system-level response. Furthermore, these results are unlikely
to have been discovered using purely asymptotic methods,
as has been the tradition in the field of electrokinetics.
Figure 3 shows snapshots of the dimensionless salt

concentration c ¼ ðcþ þ c−Þ=ð2c0Þ (top row) and the
dimensionless free charge density ðcþ − c−Þ=c0 (bottom
row) separated in time by 5 × 10−4a2=D ¼ 0.5aλD=D, i.e.,
half of the RC time of the system [28]. In the Supplemental
Material [29], we present movies from these simulations as
well as time spectra of velocity and concentration fluctua-
tions. These spectra are broadband, indicating the presence
of fluctuations over a wide range of time scales and
confirming the chaotic nature of the phenomenon.
The streamlines show that chaotic vortices are generated

at θ ¼ 0°, 180° and advected with the background flow
towards θ ¼ �90°, where they are ejected back to the bulk,
thus forming a fascinating four-way shedding phenomenon
around the cylinder. The top row of Fig. 3 shows that
relatively large ion-depleted voids of size Oð0.1aÞ are
formed at θ ¼ 0°, 180° and subsequently advected towards
θ ¼ �90°. These voids are formed due to vortices trans-
porting depleted fluid into the bulk.
Enrichment jets with peak concentration Oð10Þ are

due to surface conduction carrying counterions through
the highly enriched EDLs and their ejection at θ ¼ �90°.

FIG. 3 (color online). Instantaneous snapshots of the dimensionless salt concentration (top row) and the dimensionless free charge
density (bottom row) with flow streamlines superposed for ϵ ¼ 10−3 and Eba=VT ¼ 50. The arrows track a single void.
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It should be noted that the surface conduction inside of the
EDLs is well resolved in our calculations but that the EDLs
are not visually observable since they are much thinner than
the scales captured in the figure.
The bottom row of panels in Fig. 3 shows interesting

features in the charge density. The results indicate that the
structure of the ESC is broken by chaotic vortices, leading
to an ESC with a highly unsteady and irregular boundary.
For this specific calculation, the maximum charge density
in the ESC is Oð10−1Þ. Wherever there is a void, there is a
corresponding zone of bulk charge of Oð10−2Þ within that
region that is advected along the surface. As they approach
θ ¼ �90°, the structures are stretched into ribbonlike
shapes with bands of positive and negative charge.
Figure 4 shows color plots of the time-averaged con-

centration and flow streamlines from our DNS [Fig. 4(a)]
in contrast to the weakly nonlinear asymptotic model
[Fig. 4(b)]. Squires and Bazant calculated the asymptotic
velocity field as fvr; vθg ¼ 2U0ða=rÞ3fcosð2θÞ; sinð2θÞg,
where U0 ¼ εaE2

b=μ [6]. While the asymptotic model
displays uniform concentration and symmetric streamlines,
the DNS shows strong concentration polarization around
the cylinder (even after time averaging) with ion depletion
starting at θ¼0°, 180° and advecting towards θ¼�90°.
Furthermore, a strong salt enrichment jet due to ejection of
ions via the surface-conduction mechanism is predicted. A
similar enrichment phenomenon near metallic posts was
observed experimentally by Leinweber et al. [30].
The difference in the streamlines in Fig. 4 indicates the

difference between the flow fields with the spacing between
streamlines being inversely proportional to velocity. The
time-averaged flow from the DNS is much smaller than that
from the weakly nonlinear asymptotic model by a factor up
to ≈5.
Figure 5 shows the effect of chaos on the predicted radial

velocity magnitude. The retardation of the DNS velocity
from the asymptotic scaling develops rapidly in the

nonlinear regime but levels off around Eba=VT ¼ 25.
The DNS also predicts asymmetry between the inward and
the outward velocities by up to a factor of about 2 in the
nonlinear regime that is not captured by the asymptotic
model. Above ≈30 thermal volts, the DNS becomes chaotic
and the gap between the DNS and the weakly nonlinear
asymptotic model further increases. In the chaotic regime,
mean velocities from the DNS are compared to the steady
asymptotic prediction. From the inset in Fig. 5, it is evident
that in the chaotic regime, the velocity still scales very
nearly like E2

b, even though the predicted velocities are
significantly lower than those from the asymptotic analysis.
This is consistent with the experimental evidence by
Harnett et al. [9] who measured ICEO flow velocities
4 times smaller than those predicted by their (slightly
improved) asymptotic model.
Summary.—We presented results from direct solutions to

the Poisson-Nernst-Planck and Navier-Stokes equations for
a binary electrolyte next to a polarizable object. Our DNS
shows for the first time that induced-charge electrokinetic
systems can be chaotic at high voltages. The resulting
nonlinear dynamics due to concentration polarization are
shown to significantly suppress the time-averaged ICEO
flow and can explain existing puzzling discrepancies
between asymptotic-based models and measurements.
These results are directly relevant to applications such as
pumping and mixing in microdevices. Flow chaos and
unsteadiness may be either beneficial (mixing) or deleteri-
ous (pumping), and the presented insights can guide design
to either enhance or suppress them. Additionally, this newly
discovered instability may be present in a broad range of

FIG. 4 (color online). Color plots of the time-averaged salt
concentration and flow streamlines for Eba=VT ¼ 50, highlight-
ing the difference in ICEO calculations by (a) the DNS and (b) the
weakly nonlinear asymptotic model. Velocity versus voltage is
plotted in Fig. 5 for points A and B located at r ¼ ffiffiffi

3
p

a and
θ ¼ 0° and 90°. (a) Time-Averaged DNS. (b) Asymptotic.

FIG. 5 (color online). Magnitude of the mean radial velocity vr
from our DNS scaled by the radial velocity vr;asymptotic from the
weakly nonlinear asymptotic model at probes A (blue squares)
and B (orange circles) as a function of applied field Eba=VT .
Inset: As in the main panel, but without scaling, and with
vr;asymptotic given by the black line. The positions of probes
A (inflow) and B (outflow) are indicated in Fig. 4.
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electrochemical applications in which aqueous electrolytes
are forced by electric fields near electrodes, including
electrolysis and electrodeposition.
Our DNS database can be used to guide the improvement

of asymptotic models needed for design and optimization
studies. Plausible extensions of this work include the
investigation of ac fields and the coupling of chaos with
steric effects. The results from this study present novel
implications in the fields of electrokinetics, electrochem-
istry, and microfluidics and offer opportunities for inter-
actions between chemical engineers, fluid dynamicists, and
applied mathematicians.
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