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A practical use of the entanglement entropy in a 1D quantum system is to identify the conformal field
theory describing its critical behavior. It is exactly ðc=3Þ ln l for an interval of length l in an infinite
system, where c is the central charge of the conformal field theory. Here we define the geometric mutual
information, an analogous quantity for classical critical points. We compute this for 2D conformal field
theories in an arbitrary geometry, and show in particular that for a rectangle cut into two rectangles, it is
proportional to c. This makes it possible to extract c in classical simulations, which we demonstrate for
the critical Ising and three-state Potts models.
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Introduction.—In studies of new and exotic phases of
quantum matter, the entanglement entropy has established
itself as an important resource [1]. It is particularly useful
in the many 1D quantum critical systems governed by a
conformal field theory (CFT) [2] in the large-distance limit.
Here the Rényi entanglement entropy Sn of the ground state
is universal [3–6], and the leading piece is proportional
to the central charge c of the CFT characterizing the
universality class. Namely, for a periodic system of length
L cut into two open segments of respective sizes LA and
LB ¼ ðL − LAÞ,

Sn ¼
c
6

�
1þ 1

n

�
log

�
L
π
sin

πLA

L

�
þ � � � : (1)

Thus it is possible to extract the central charge from a
numerical computation without fitting parameters or non-
universal prefactors, and so identify the theory. This is a
striking example of the success of information-theoretic
concepts applied to condensed-matter problems.
Since a CFT also describes the large-distance limit of

a two-dimensional classical critical model with rotational
invariance, it is natural to expect that information-theoretic
concepts can be used to analyze classical critical systems
[7–10]. The aim of this Letter is to define and compute
the geometric mutual information Gn, a quantity quite
analogous to the quantum result in Eq. (1). We show that
in the 2D CFT case it provides an analogous quantity
proportional to the central charge. For example, cutting an
Lx × Ly rectangle into two LA × Ly and LB × Ly rectangles
yields

Gn ¼
c
2

�
1

n − 1

�
log

�
fðLA=LxÞfðLB=LxÞffiffiffiffiffi

Lx
p

fðLy=LxÞ
�
. (2)

The function f is related to the Dedekind η function
and is given in Eq. (13). As in Eq. (1), there is no dep-
endence on any nonuniversal parameters. Below we prove
this and related formulas, and give several numerical
checks.
Rényi mutual information.—Shannon showed that entro-

pies can be defined for any discrete probability distribution
fpig [11]. The Rényi entropy is

Sn ¼
1

1 − n
log

�X
i

pn
i

�
; (3)

where the Rényi index n need not be an integer. In the
quantum case, the pi label the eigenvalues of the reduced
density matrix. In our classical case, the probabilities come
from the Boltzmann weights pi ¼ ZðβÞ−1e−βEi , where
ZðβÞ ¼ P

ie
−βEi is the partition function and β ¼ 1=T is

the inverse temperature.
We cut a classical spin system into two parts A and B

and label the spin configurations within each subsystem as
iA and iB, respectively. In A, the probability of observing
the configuration iA is simply piA ¼

P
iBpiA;iB. The Rényi

entropy (3) of this probability distribution quantifies the
amount of information that can be accessed about system A,
assuming complete knowledge of B. It is highly convenient
to consider a more symmetric quantity, the Rényi mutual
information (RMI):

In ¼ SnðAÞ þ SnðBÞ − SnðA∪BÞ. (4)

It can be used for example to detect phase transitions, and
extract the critical temperature accurately [9].
Because the leading bulk contributions cancel, the RMI

obeys a boundary law [9]:

InðA; BÞ ¼ anLþ Gn þ oð1Þ; (5)
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where L is the length of the boundary between A and B
[in Fig. 1(a), L ¼ Lx]. The most interesting piece of Eq. (5)
is the subleading term Gn, which for critical systems
depends on the geometry of regions A and B. We dub it
the geometric mutual information (GMI). We calculate it
for two-dimensional critical systems exactly by combining
renormalization-group arguments with boundary CFT. The
result is universal, and can be used to identify the critical
theory precisely.
The replicated partition functions.—For n an integer

larger than one, the RMI can be expressed as [9]

InðA; BÞ ¼
1

1 − n
log

�
Z½A; n; β�Z½B; n; β�

ZðβÞnZðnβÞ
�
; (6)

where

Z½A; n; β� ¼
X
iA

X
iB1 ;…;iBn

e
−β
P

n
k¼1

EiA;iBk . (7)

The sum runs over all spin configurations of n independent
copies of the subsystem B, each at temperature T. When
the interactions are local, Z½A; n; β� can be interpreted as the
partition function of a replicated system, as is shown in
Fig. 1(b). All these replicas interact with a single copy of A.
However in A, the energy is that of a system at inverse
temperature β0 ¼ nβ (and therefore temperature T 0 ¼ T=n).
The analogous replicated partition function Z½B; n; β� is
shown in Fig. 1(c).
The quantity Z½A; n; β� in Eq. (7) can be expressed in a

form not requiring n be an integer. Here we assume nearest-
neighbor interactions, but the following can be generalized.
We denote by boundary sites those in A with neighbors in
B; these are the sites on the thick red line in Fig. 1(a). The
spin configuration on the boundary sites is labeled by
σ ¼ ðσ1; σ2;…; σLx

Þ, and we have

Z½A; n; β� ¼
X
σ

Zσ
AðnβÞ½Zσ

BðβÞ�n. (8)

Here Zσ
AðnβÞ is the partition function of subsystem A at

temperature T=n, where the boundary spins are fixed to the
particular configuration σ. Zσ

BðβÞ is the partition function of
the subsystem B at temperature T, to which the boundary
sites with configuration σ have been added.
Shape dependence at the critical points.—Our results

apply to a classical lattice model with a critical point at
T ¼ Tc separating two noncritical phases, one ordered
and one disordered. The RMI exhibits critical behavior
at both T ¼ Tc and T ¼ nTc. We first focus on T ¼ Tc in
the Ising model. In the replicated picture for Z½A; n; βc�,
the subsystem A is at temperature Tc=n so that for n > 1 it
is in the ordered phase. The partition function is dominated
by configurations near the two ordered ones, and in the
large-distance limit, one can effectively take all spins to
be the same. The n copies of B are at temperature Tc and
do fluctuate. However, the different copies are coupled
only via the boundary spins, which belong to system A and
so are all aligned here. Thus, the copies do not interact,
giving

Z½A; n; βc� ≈ ½ZðþÞ
B ðβcÞ�n þ ½Zð−Þ

B ðβcÞ�n. (9)

Here ZðþÞ
B ðβcÞ ¼ Zð−Þ

B ðβcÞ is the partition function of
system B at the critical temperature with all boundary
spins fixed to þ or −; the Z2 symmetry of the Ising model
means the two are identical.
In the continuum limit the (lattice) boundary conditions

renormalize to a conformally invariant boundary condition
[12]. We denote the universal parts of Zð�Þ

A;BðβcÞ by Zfix
A;B and

that of the whole system by ZA∪B, giving

GnðTcÞ ¼
1

1 − n
log

�
d ×

�
Zfix

A Zfix
B

ZA∪B

�
n
�
. (10)

Because of the form of Eq. (6), the leading nonuniversal
bulk contributions to the RMI cancel. This applies gen-
erally when d is the number of ordered configurations in a
symmetry-broken phase, e.g., d ¼ 2 and 3 for Ising and
three-state Potts models, respectively.

FIG. 1 (color online). (a) Example of a bipartition of the classical system at temperature T ¼ 1=β. The thick red line represents the
boundary between A and B. (b),(c) Nontrivial n-sheeted partition function Z½A; n; β� and Z½B; n; β� in the Rényi mutual information
(n ¼ 4 shown). Each of the n sheets is at temperature T, while the remaining one is at temperature T=n.
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The subsystem A in Z½A; n; βc=n� is also at the critical
temperature. In this case it is coupled to n disordered
systems, so that the conformal boundary condition on A is
free. Thus, at T ¼ nTc, the GMI exhibits critical behavior,
being

GnðnTcÞ ¼
1

1 − n
log

�
Zfree

A Zfree
B

ZA∪B

�
. (11)

Owing to Eq. (8), they also hold away from integer n,
provided n > 1 [13].
Since the boundary law term in Eq. (5) does not depend

on LA or LB, the shape dependence at a critical point is
given at the leading order by G. This can be used to check
the value of the critical temperature Tc in case it is not
known, as an alternative to the method of Ref. [9].
Extracting the central charge.—Equations (10) and (11)

are true in any geometry in any dimension. We here
focus on two dimensions, where exact expressions for
the partition functions can be found using CFT. The explicit
expressions involve not only the central charge c of the
underlying CFT, but also h, the dimension of the operator
that changes the boundary conditions from those on
the external boundary of A∪B to those along the cut
[12]. The nicest formulas here occur for a rectangle split
into two rectangles, where there are at most two places
where the boundary condition changes. In this case, the
partition function for an Lx × Ly rectangle is known for all
CFTs [14–16]:

Z ¼ Lc=4−4h
x ½fðLy=LxÞ�16h−c=2½fð2Ly=LxÞ�−8h; (12)

where f is defined as

fðuÞ ¼ e−πu=12
Y∞
k¼1

ð1 − e−2πkuÞ. (13)

This is related to the standard Dedekind eta function [17],
through ηðτÞ ¼ fð−iτÞ.
When the external boundary conditions are free, at

T ¼ nTc the boundary conditions along the cut are the
same, and the shape function is only determined by
the central charge. Plugging Eq. (12) into Eq. (11) gives
the result (2) advertised in the introduction. At T ¼ Tc,
Eq. (10) yields

GnðTcÞ ¼
n

n − 1
½JðcÞ − JðhÞ�; (14)

where the “central charge” part is given by

JðcÞ ¼ c
2
log

�
fðLA=LxÞfðLB=LxÞffiffiffiffiffi

Lx
p

fðLy=LxÞ
�
; (15)

while the part proportional to the dimension of the
boundary-condition changing operator is

JðhÞ ¼ 8h log

�
fðLA=LxÞ2fðLB=LxÞ2

Lxfð2LA=LxÞfð2LB=LxÞ
�
. (16)

For all statistical models with local positive Boltzmann
weights c and h are positive, so both Eqs. (15) and (16)
are positive, and there is a competition between them
in Eq. (14). For fixed spins at the external boundary,
this yields GnðTcÞ ¼ ðn=n − 1ÞJðcÞ, and GnðnTcÞ ¼
ð1=n − 1Þ½JðcÞ − JðhÞ�.
As a consequence of sharp corners in our geometry [18],

each shape function contains an additional divergent term
∝ logLx. A similar logarithm has also been identified in
the RMI of certain particular 2D wave functions [19–22], or
at finite temperature [23].
Monte Carlo simulations.—We demonstrate the utility of

the GMI by analyzing several classical critical points in
Monte Carlo simulations. We use a novel method that does
not require thermodynamic integration, a transfer-matrix
ratio trick. From Eq. (7), we write

Z½A; n; β�
ZðβÞn ¼

YN−1

i¼0

Z½Aiþ1; n; β�
Z½Ai; n; β�

; (17)

where A0 is the empty region so that Z½A0; n; β� ¼ ZðβÞn,
AN ¼ A, and the Ai interpolate between the two. Such
terms have been calculated previously usingmethods known
as “ratio tricks” [24,25]. This is typically done by generating
a valid state from partition function Z½Ai; n; β� and looking
at the weight of the same configuration as a state from
the partition function Z½Aiþ1; n; β�.
In classical systems we can calculate these ratios of

partition functions by using transfer matrices; a similar
idea is used for calculating partition functions on graph
problems [26]. In a two-dimensional system, we require
that the systems Z½Aiþ1; n; β� and Z½Ai; n; β� differ only
by a one-dimensional strip of spins Sfiþ1g. To calculate the
ratios in Eq. (17) we treat all the spins not in Sfiþ1g as a
fixed bath and use a transfer-matrix approach to calculate
Z½Aiþ1; n; β�=Z½Ai; n; β� given that fixed bath. Since Sfiþ1g
is one dimensional, the two partition functions can be
calculated quickly and efficiently. The element Z½A1; n; β�
is the partition function of n noninteracting strips each
connected to their own fixed bath, while Z½Aiþ1; n; β� is
represented as (effectively) one strip of spins connected to n
fixed baths (one for each replica). This method gives us
direct access to the shape dependence of the RMI, at any
fixed β.
Since the bath of spins is fixed for the calculation, we

must average this estimate of the ratio over many instances
of the bath configurations, which are generated using a
normal Monte Carlo (MC) procedure [26]. Each ratio is
an independent calculation; thus, parallelization is trivial,
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allowing the study of very large systems. Restricting Sfiþ1g
to 1D strips ensures that the largest amount of time is spent
generating random states. In a typical MC procedure this
scales as OðNÞ, where N is the number of spins in the
system. This implies that the calculation of SnðAÞ should
scale as OðnNLAÞ,
Comparing numerics to theory.—To compare numerical

simulations to the theoretical results (2) and (14), we
consider discrete spin systems on an L × L square lattice,
cut into two rectangles of respective sizes l × L and
ðL − lÞ × L. The spins are not constrained at the external
boundary and so fluctuate freely. We compute the second
RMI I2 at T ¼ Tc and T ¼ 2Tc, using the MC techniques
described above. The shape dependence is completely
determined by the geometry; the central charge is the
leading coefficient, as opposed to its appearance as a
subleading term in the free energy [27,28]. Our method
has other nice features: it does not require studying off-
critical behavior as in Refs. [29,30], or implementing a
lattice version of the stress tensor [31].
We first focus on the Ising model. At T ¼ 2Tc, the RMI

is given by Eq. (2), and so gives direct access to the central
charge, c ¼ 1=2 here. We plot I2ðl; LÞ − I2ðL=2; LÞ in
Fig. 2. At small aspect ratio l=L finite-size effects should
be large, so we extrapolate by fitting the data to aþ bL−1

for each l=L. The presence of this L−1 correction is
expected in geometries with sharp corners (see, e.g.,
Refs. [20,32,33]). The agreement with the shape depend-
ence of the CFT with c ¼ 1=2 is excellent. One way to
extract the central charge without knowing it a priori is to
plot the extrapolated data as a function of the c ¼ 1 CFT
shape. One then expects to see a straight line with slope c.
As can be seen in the inset, the agreement with c ¼ 1=2
remains excellent, our best estimate being c ¼ 0.49ð1Þ.
Our numerical results for T ¼ Tc are shown in Fig. 3.

Here the boundary conditions along the cut are fixed, so

with external free boundary conditions, Eq. (14) applies.
The conformal dimension of the operator that changes
between fixed and free boundary conditions in the Ising
model is h ¼ 1=16 [12], giving a curve in agreement with
our numerics. Interestingly, the effect of a nonzero h
counterbalances the central charge part, and is even enough
to flip the shape, akin to the even or odd effect in 2D
resonating valence bond wave functions [34].
To illustrate the generality of our method, we checked

our results in the three-state Potts model, a strongly
interacting model not mappable to free fermions like the
Ising model. The numerical results at T ¼ 2Tc are shown in
Fig. 4. These agree well with Eq. (2) using the three-state
Potts central charge c ¼ 4=5. Given that finite-size effects
in the Q-state Potts model increase with Q [35], our fit of
c ¼ 0.75ð5Þ is good. We also checked numerically that at
T ¼ Tc, Eq. (14) holds with the correct boundary exponent
h ¼ 1=8 [12]; similarly to the Ising model the shape is also
flipped.

FIG. 3 (color online). Second RMI for the Ising model at
T ¼ Tc, for system sizes L ¼ 16, 32, 48, extrapolation, and
comparison with CFT (black curve). Due to the presence of
boundary-condition changing operators, the curve is flipped
compared to Fig. 2.

FIG. 4 (color online). Second RMI for theQ ¼ 3 Potts model at
T ¼ 2Tc, for system sizes L ¼ 16, 32, 48, 64, and comparison
with CFT (black curve). Red circles are the extrapolated data.
Inset: central charge extraction. The data are comparable to the
expected c ¼ 4=5 in the thermodynamic limit. The Ising slope is
also shown for comparison.

FIG. 2 (color online). Second RMI for the Ising model at
T ¼ 2Tc, for system sizes L ¼ 16, 32, 48, and comparison with
CFT (black curve). Red circles represent the extrapolated data
discussed in the text. Inset: Ising central charge extraction.
The data can be seen to agree very well with c ¼ 1=2. We also
show the line corresponding to the Q ¼ 3 Potts model for
comparison.
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Conclusion.—We have defined the geometric mutual
information and computed it for 2D critical classical
systems. The GMI is easy to measure in classical simu-
lations using the transfer-matrix ratio trick, and so can be
used to identify the universality class. The expressions (10)
and (11) relating the GMI to partition functions hold in any
geometry in any dimension, and we have verified numeri-
cally the exact results for the cylinder and torus as well as
the rectangle described above.
An interesting future direction is to compute the RMI for

the XY model, which never orders at low temperature. Here
the replicated picture yields a nontrivial gluing of c ¼ 1
compact-boson CFTs with different radii. It also would be
illuminating to study further the close connection of the
GMI with the entanglement entropy of certain 2D quantum
wave functions, for example the transitions that have
been observed as a function of the Rényi index [20,21,36].
It could shed light on a vexing problem occurring in the
singular limit n → 1, where universal subleading terms
[37,38] exhibit mysterious boundary critical behavior in
infinite geometries in the Ising case [20,39].
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