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The triangular lattice of S ¼ 1=2 spins with XXZ anisotropy is a ubiquitous model for various frustrated
systems in different contexts. We determine the quantum phase diagram of the model in the plane of the
anisotropy parameter and the magnetic field by means of a large-size cluster mean-field method with a
scaling scheme. We find that quantum fluctuations break up the nontrivial continuous degeneracy into two
first-order phase transitions. In between the two transition boundaries, the degeneracy-lifting results in the
emergence of a new coplanar phase not predicted in the classical counterpart of the model. We suggest that
the quantum phase transition to the nonclassical coplanar state can be observed in triangular-lattice
antiferromagnets with large easy-plane anisotropy or in the corresponding optical-lattice systems.
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Introduction.—Geometric frustration arises when local
interaction energies cannot be simultaneously minimized
due to lattice geometry, resulting in a large ground-state
degeneracy [1,2]. A variety of unconventional phenomena
generated by frustration have been a fascinating and
challenging subject in modern condensed matter physics.
In particular, frustrated spin systems are a promising place
to explore exotic states of matter such as noncolinear
antiferromagnetic order [3–6], order-by-disorder selection
to form magnetization plateaus [7–10], spin liquid [11,12],
and lattice supersolidity [13–15]. However, established
theories and numerical simulations often encounter serious
difficulties including the notorious minus-sign problem [16]
in dealing with frustrated systems. Thus, a reliable inves-
tigation for frustrated magnetism has been limited mainly to
classical spins [17–19], the SU(2)-symmetric point of the
model [3–6], or (quasi-)one-dimensional systems [20].
In this Letter, we demonstrate a possibleway to overcome

the problem by determining the ground-state phase diagram
of frustrated quantum spins on the 2D triangular lattice over
a wide range of magnetic field and exchange anisotropy.
This system has also been attracting great physical interest
from the experimental side since the latest developments in
magnetic materials and ultracold gases have resolved
technical difficulties to realize ideal 2D frustrated systems.
Specifically, the compound Ba3CoSb2O9 has been re-
ported very recently [21–24] as the first example of ideal
triangular-lattice antiferromagnet with spatially isotropic
couplings and no Dzyaloshinsky-Moriya interactions. In
this compound, the effective S ¼ 1=2 spins of Co2þ ions
form a regular triangular lattice unlike other known
(distorted) materials such as Cs2CuCl4 [25], Cs2CuBr4
[26,27], and κ − ðBEDT − TTFÞ2Cu2ðCNÞ3 [28]. The mag-
netization process of the single-crystal samples has shown a

strong dependence on the magnetic field direction [23],
which indicates the existence of the anisotropy between
the in-plane (XY) and out-of-plane (Ising) exchange inter-
actions in spin space, known as XXZ anisotropy. To
properly explain the observed magnetization anomalies, it
is necessary to take into account the exchange anisotropy
and quantum fluctuations for arbitrary field. Furthermore,
considerable advances have also been made in the direction
of simulating magnetism with ultracold atomic or molecular
gases in a periodic optical potential [29–32]. A frustrated
XY system has indeed been realized recently [31] by
dynamically inverting the sign of the hopping integral
[33,34] of bosonic atoms in a triangular optical lattice
[35]. In optical lattices, an Ising-type coupling can be
introduced by finite-range repulsion, e.g., dipole-dipole
interactions [36–38], while the XY coupling comes from
the hopping. Thus, the XXZ anisotropy is widely control-
lable in such a system.
In connection with the ongoing experiments, we report a

theoretical prediction of the quantum phase diagram of the
spin-1=2 frustrated XXZ system on the triangular lattice
with the following Hamiltonian [39]:

Ĥ ¼ J
X

hi;ji
ðŜxi Ŝxj þ Ŝyi Ŝ

y
jÞ þ Jz

X

hi;ji
Ŝzi Ŝ

z
j −H

X

i

Ŝzi ; (1)

where the sum
P

hi;ji runs over nearest-neighbor sites. The
spin-1=2 XXZ model is also an effective model describing
spin-dimer compounds such as Ba3Mn2O8, in which the
isotropic couplings can induce large effective XXZ
anisotropy [40], and binary mixtures of atomic gases in
an optical lattice [41,42]. Despite the broad relevance and
the apparent simplicity of the model (1), its quantum phase
diagram in the frustrated regime (J, Jz > 0) remains
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unrevealed mainly because the quantum Monte Carlo
(QMC) method suffers from the minus-sign problem.
Here, we avoid the usual difficulties for frustrated systems
by employing the large-size cluster mean-field method
combined with a scaling scheme (CMFþ S) established
recently in Ref. [43] and determine the complete quantum
phase diagram in the whole plane of the anisotropy −∞ <
J=Jz < ∞ and the magnetic field H=Jz for Jz > 0 with a
high degree of accuracy (see Fig. 1). We show that quantum
fluctuations drastically change the phase diagram from the
classical one. In particular, we find that the nontrivial
continuous degeneracy at J=Jz ¼ 1 breaks up into two
first-order transitions at strong fields due to the quantum
effects, and a nonclassical coplanar state emerges between
the two transitions. We complement the analysis with the
dilute Bose gas expansion [44] near the saturation field and
express the first-order transitions in terms of the magnon
Bose-Einstein condensation (BEC). We also discuss a
translation of the results into the bosonic language with
optical-lattice experiments in mind.
Classical phase diagram.—In Fig. 1(a), we show the

phase diagram obtained by the classical-spin (S ¼ ∞)
analysis [18,47] as reference to be compared with the
quantum case. For positive easy-axis anisotropy
0 < J=Jz < 1, one finds three different states with the
three-sublattice

ffiffiffi
3

p
×

ffiffiffi
3

p
structure below the saturation

field Hs ¼ 3J=2þ 3Jz: low- and high-field coplanar states
depicted in Figs. 2(d) and 2(a) and a collinear up-up-down
state in Fig. 2(e). For easy-plane anisotropy J=Jz > 1, the

so-called umbrella state in Fig. 2(c) appears. We will
discuss quantum effects on the classical ground state by
means of the dilute Bose-gas [44] and CMFþ S [43]
approaches. It is of particular interest how the ground-state
degeneracy along the line of J=Jz ¼ 1 [17] is lifted.
Dilute Bose-gas expansion.—The quantum magnetic

structures just below Hs can be semianalytically studied
using the dilute Bose-gas expansion [44,48], in which first
the spin model (1) is rewritten in the hard-core boson
(magnon) representation: Ŝzi ¼ 1=2 − â†i âi and Ŝþi ¼ âi.
For the triangular lattice, the magnons âk in the Fourier
space can condense at either or both of the two independent
minima of the single-particle energy, which are located at
the corners k ¼ �Q≡�ð4π=3; 0Þ of the hexagonal first
Brillouin zone. For 0 < Hs −H ≪ Hs, the ground-state
energy per site up to fourth order in the magnon BEC order
parameters ψ�Q ≡ hâ�Qi is given by

E0=M ¼ −ðHs −HÞðjψQj2 þ jψ−Qj2Þ
þ Γ1ðjψQj4 þ jψ−Qj4Þ=2þ Γ2jψQj2jψ−Qj2: (2)

The degeneracy in the relative phase ϕ ¼ argðψQ=ψ−QÞ
between the two BECs can be lifted by the higher-order
term 2Γ3jψQj3jψ−Qj3 cos 3ϕ. More details of Eq. (2)
and the effective interactions Γ1, Γ2, and Γ3 are presented
in the Supplemental Material [49]. The ordering vectors
�Q identify a three-sublattice structure consistent with
the classical-spin analysis. Minimizing the ground-state
energy, we obtain the following three types of solution:
(i) Γ1 > Γ2 and Γ3 < 0: jψQj ¼ jψ−Qj ≠ 0, ϕ ¼ 0;
(ii) Γ1 > Γ2 and Γ3 > 0: jψQj ¼ jψ−Qj ≠ 0, ϕ ¼ π;
(iii) Γ1 < Γ2: jψQj ≠ 0 and jψ−Qj ¼ 0 (or vice versa).
Since the double-BEC solutions with (i) ϕ ¼ 0 and

(ii) ϕ ¼ π correspond to the two different coplanar states in
Figs. 2(a) and 2(b) [44], we refer to them as the “0-coplanar”
and “π-coplanar” states. The single-BEC solution (iii) is
translated into the umbrella state in Fig. 2(c).
We calculate the coplanar-umbrella phase boundary

ðJ=JzÞc2 from the condition Γ1 ¼ Γ2. In 2D systems, Γ1

and Γ2 vanish due to the infrared singularity in loop
integrals [50]. Therefore, we introduce interlayer XXZ

FIG. 1 (color online). Ground-state phase diagram of the spin-
1=2 triangular-lattice XXZ model from (a) the classical and (b)
CMFþ S analyses (Jz > 0). The thick blue (thin black) solid
curves correspond to first- (second-)order transitions. The latest
QMC data [45,46] are shown by the red dashed (first-order) and
dotted (second-order) curves. The symbol (×) is the value from
the dilute Bose-gas expansion.

FIG. 2 (color online). Five types of spin configurations for
J=Jz > 0. The sets of three arrows represent each spin angle on
the three sublattices. The lower illustrations in (a)–(c) depict the
corresponding distributions of magnon BECs at the corners of the
hexagonal first Brillouin zone.
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couplings J⊥, J⊥z as regulators, and then take the limit of
J⊥, J⊥z → 0 [49]. The value of ðJ=JzÞc2 converges to 2.218
regardless of the sign and ratio of J⊥ and J⊥z (or, in other
words, independently of the details of the regularization)
[see Fig. 3(a)]. This means that the region of coplanar states
is extended toward the rather large easy-plane anisotropy
side due to the quantum effects [see the symbol (×) in
Fig. 1(b)]. Even for 0 < Hs −H ≪ Hs, the dilute Bose-gas
expansion has not been able to determine which coplanar
state (ϕ ¼ 0 or π) emerges, because the calculation of Γ3 is
practically difficult [44]. We will see below that the CMFþ
S analysis unambiguously answers this long-standing
question, first raised in Ref. [44].
Entire quantum phase diagram.—The complete quan-

tum phase diagram for an arbitrary field is numerically
determined by the use of the CMFþ S method. We
perform the exact diagonalization of a cluster system of
NC spins after the standard mean-field decoupling of the
interactions between the edge and outside spins [43].
Although we treat only static mean fields unlike the
(cluster) dynamical mean-field approximation [51,52],
we can deal with a large-size cluster, which gives the
possibility to take the infinite cluster-size limit [38,43,53].
Here, we use the series of the clusters that consist of up to
NC ¼ 21 spins and self-consistently calculate mα

μ ≡ hŜαiμi
(α ¼ x, y, z) considering all possible spin structures under
the three-sublattice ansatz (μ ¼ A, B, C). We find that the
data for the phase boundaries obtained by the three largest
clusters produce a linear extrapolation line with the scaling
parameter λ≡ NB=ðNCz=2Þ [see Fig. 3(b)], which allows
us to determine the phase diagram of the frustrated spin
model (1) in a quantitatively reliable way. Here, NB is the
number of bonds within the cluster and z ¼ 6 is the
coordination number of the triangular lattice.
The quantum phase diagram is shown in Fig. 1(b). We

see that the positive (frustrated) J=Jz side is drastically

changed from the classical one. The collinear up-up-down
state is extended by quantum effects, which causes a plateau
at one-third of the saturation magnetization in the magneti-
zation process even for J=Jz ≥ 1. The coplanar states are
also significantly extended toward the easy-plane side for
strong fields. Just below the saturation field, the scaled value
of the coplanar-umbrella boundary is ðJ=JzÞc2 ¼ 2.220 [see
Fig. 3(b)], which is in good agreement with the value 2.218
from the dilute Bose-gas expansion. Of particular interest is
the emergence of a new phase not predicted in the classical
counterpart of the model for large easy-plane anisotropy
1.6≲ J=Jz ≲ 2.3 and strong fields H=Hs ≳ 0.84 [red
region in Fig. 1(b)] as a result of a novel quantum lifting
mechanism (explained below). The spin structure of the
nonclassical state is given by mz

A ≠ mz
B ¼ mz

C and mx
A ¼ 0,

mx
B ¼ −mx

C when the ordering plane is the xz plane
(my

μ ¼ 0). This is indeed the π-coplanar state shown in
Fig. 2(b). On the other hand, mz

A ¼ mz
B ≠ mz

C and mx
A ¼

mx
B ≠ mx

C in the 0-coplanar state (green region). The 0 − π
transition point just below the saturation field is extrapolated
to ðJ=JzÞc1 ¼ 1.588, at which the sign of Γ3 should change.
The total transverse magnetization is nonvanishing in the
0-coplanar state (2mx

A þmx
C ≠ 0) [39], whereas it is zero in

the π-coplanar state.
The quantum phase diagram does not include any

disordered phase, i.e., spin liquid. The two end points of
the plateau at J=Jz ¼ 1 are given by Hc1=Jz ¼ 1.345 and
Hc2=Jz ¼ 2.113, which are consistent with the coupled
cluster method [8] and the exact diagonalization with
periodic boundary conditions [9]. Moreover, our result gives
good agreement with the QMC data [45,46] (red curves) in
the negative J=Jz side including the order of the transitions
[46,54,55]. In particular, the phase transition point atH ¼ 0,
ðJ=JzÞ0 ¼ −0.238, agrees with the known numerical data,
ðJ=JzÞ0 ≈ −0.23– − 0.21 [45,46,55,56] (see the compari-
son table in Ref. [49]), which indicates high accuracy of the
CMFþ S analysis on the current problem.
Degeneracy-lifting mechanism.—In Fig. 4(a), we plot

the classical solution curve in the plane of the conjugate
thermodynamic variables: J=Jz and the transverse near-
est-neighbor correlation χ ≡ −

P
hi;jihŜxi Ŝxj þ Ŝyi Ŝ

y
ji=M.

At J=Jz ¼ 1, there is a nontrivial continuous degeneracy
of ground states in which the classical-spin vectors satisfy
SA þ SB þ SC ¼ ð0; 0; H=3JÞ with jSμj ¼ 1=2 [17].
Figure 4(b) illustrates the peculiar mechanism of the
quantum degeneracy lifting. The quantum fluctuations
select the π-coplanar state out of the continuous manifold
of the classical ground states. In the solution curve, the
point of the π-coplanar state shown in Fig. 4(a) is extended
to a finite section in Fig. 4(b). All of the other intermediate
states form two separate sections of the solution curve with
negative slope (negative “susceptibility”), which indicates
the instability of those states. As a result, the classical
ground-state degeneracy is broken up into two first-order
transitions [see Fig. 4(c)].

FIG. 3 (color online). (a) Coplanar-umbrella phase boundary
ðJ=JzÞc2 just below the saturation field as a function of
the interlayer coupling strength obtained from Γ1 ¼ Γ2. We
display the cases of the isotropic (circles) and XY-type (squares)
antiferromagnetic interlayer couplings as examples. (b) Cluster-
size scaling of the CMF data for the phase boundaries ðJ=JzÞc1
between 0- and π-coplanar phases as well as ðJ=JzÞc2 just below
the saturation field.
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This novel degeneracy-lifting mechanism is sharply
different from the known cases. For example, the
square-lattice XXZ model also possesses a classical con-
tinuous degeneracy at the boundary of the spin-flop
transition from the Néel to canted antiferromagnetic phase
[57,58]. However, all of the intermediate states in the
degenerate manifold are destabilized and only a single first-
order transition is induced by the quantum effects [57–59]
(see Ref. [49] for the direct comparison with Fig. 4). The
same behavior also appears in certain bosonic systems such
as spin-2 BECs at the transition boundaries to nematic
phases [60]. In contrast, in the present model a specific
intermediate state is chosen by quantum fluctuations from
the degenerate manifold and occupies a finite region of the
quantum phase diagram, whereas it does not appear in the
classical one.
Remarks on experiments.—In the experiment of Ref. [23]

on Ba3CoSb2O9, the magnetization curve exhibits a cusp at
H ≈Hs=3 for magnetic fields parallel to the c axis and a
clear plateau is not detected. This can be understood within
the phase diagram in Fig. 1(b) if the anisotropy is as large as
J=Jz ≈ 1.3. The authors in Ref. [23] have conjectured that a
magnetization anomaly in Ba3CoSb2O9 under transverse
magnetic fieldH⊥cmay correspond to the 0–π transition of
coplanar states, which is still controversial [24]. Moreover,
the first-order 0–π transition for H∥c is expected to be
observed as a jump in the magnetization process by
synthesizing a family material with larger easy-plane
anisotropy 1.6≲ J=Jz ≲ 2.3 or by tuning J=Jz with pres-
sure [61] in spin-dimer compounds such as Ba3Mn2O8 [40].
In the context of cold atomic or molecular systems, one

could prepare the spin-1=2 XXZ system using, e.g., dipolar

bosons with strong on-site repulsions in a triangular optical
lattice [36–38]. The frustrated regime J, Jz > 0 could be
accessed by the latest techniques, such as a fast oscillation
of the lattice [31,33,34]. In the language of the hard-core
boson, 1=2 −mz

μ and ½ðmx
μÞ2 þ ðmy

μÞ2�1=2 correspond to the
sublattice density filling and the sublattice BEC order
parameter, respectively [62]. Therefore, the 0-coplanar state
is regarded as a lattice supersolid (SS) state. Although the
bosonic counterpart of the π-coplanar state also has the
diagonal (density) and off-diagonal (BEC) orders simulta-
neously, it should be distinguished from the rigorous SS by
the fact that the bosons on one of the three sublattices have
no BEC order parameter. In other words, this state is
partially disordered in the off-diagonal sector. Thus, the
condensate flows on two sublattices avoiding the third, thus
defining a honeycomb superlattice. We then refer to the
π-coplanar state in the bosonic language as superlattice
superfluid. Thus the 0–π transition of coplanar spin states is
expected to be observed as a transition between the SS and
superlattice-superfluid states in the optical-lattice quantum
simulator. Since these two interesting phases exist for large
easy-plane anisotropy, the required strength of the dipole-
dipole interaction (¼ Jz) is relatively small compared to the
hopping amplitude (¼ jJj=2), which is more advantageous
than the conditions needed for the observation of the SS in
the negative J=Jz side [36,45,46,55,56].
Conclusions.—We have studied the quantum phases of

the spin-1=2 triangular-lattice XXZ model under magnetic
fields motivated by the latest experimental developments in
magnetism and optical-lattice systems. Using the dilute
Bose-gas expansion and the CMFþ S method, we estab-
lished the entire quantum phase diagram including the
frustrated regime and found that a nonclassical (π-)coplanar
state emerges for strong fields. This is due to a particular
lifting mechanism of the classical continuous degeneracy
into two first-order transitions. We suggest that the
quantum phase transition to the π-coplanar state can be
observed in the magnetization process of triangular-lattice
antiferromagnets with large easy-plane anisotropy or in the
corresponding optical-lattice system.
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