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We describe a variational theory for incompressible ground states and charge gaps in the N ¼ 0 Landau
level of graphene that accounts for the fourfold Landau level degeneracy and the short-range interactions
that break SU(4) spin-valley invariance. Our approach explains the experimental finding that gaps at
odd numerators are weak for 1 < jνj < 2 and strong for 0 < jνj < 1. We find that in the SU(4) invariant
case the incompressible ground state at jνj ¼ 1=3 is a three-component incompressible state, not the
Laughlin state, and discuss the competition between these two states in the presence of SU(4) spin-valley
symmetry-breaking terms.
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Introduction.—The fractional quantum Hall effect
(FQHE) is a transport anomaly that occurs whenever a
two-dimensional electron system (2DES) in a strong
perpendicular magnetic field has a gap for charged exci-
tations at a fractional value of the Landau level (LL) filling
factor. Gaps at fractional filling factors can only be
produced by electron-electron interactions. The FQHE
has, therefore, been a rich playground for the study of
strongly correlated phases of the electron liquid, hosting a
variety of exotic phenomena including fractional and non-
Abelian quasiparticle statistics [1] and electron-hole pair
superfluidity [2].
Since its discovery [3] more than three decades ago, the

FQHE has been studied almost exclusively in the 2DESs
formed near GaAs/AlGaAs heterojunctions. Because of
their small Zeeman to cyclotron energy ratio [4], the
electron spin degree of freedom in the N ¼ 0 LL of the
GaAs conduction band is often experimentally relevant,
endowing the FQHE with ground and quasiparticle states
that would not occur in the spinless fermion case [5].
The N ¼ 0 LL of monolayer graphene is nearly fourfold

degenerate because of the presence of spin and valley
degrees of freedom and is partially occupied over the filling
factor range from ν ¼ −2 to 2, opening the door to SU(4)
manifestations of the FQHE. However, because graphene
sheets on substrates generally have stronger disorder than
modulation-doped GaAs=AlGaAs 2DESs, it has until
recently not been possible to observe their fractional
quantum Hall effects. Recent studies of high-quality
graphene samples have started to clear the fog [6–11],
however, and the view that has emerged is surprising.
Experiments indicate that the graphene FQHE is stronger
for 0 < jνj < 1 than for 1 < jνj < 2 and that phase tran-
sitions between distinct states at the same ν value occur as a
function of magnetic field strength [10,11]. In this Letter,
we shed light [12] on these trends by using a variational
approach to account for weak SU(4) symmetry breaking
and by constructing rules that allow SU(4) FQHE states in

the range 0 < jνj < 1 to be generated starting from well-
known seed states in the range 1 < jνj < 2. Surprisingly,
we find that in the absence of symmetry-breaking terms the
ground state at jνj ¼ 1=3 is not of the simple Laughlin type.
Hard-core SU(4) states.—We begin by considering the

SU(4) invariant Coulomb-interaction model in the N ¼ 0
LL. It is convenient to define a filling factor measured from
the empty N ¼ 0 LL: ~ν ∈ ½0; 4� ¼ 2þ ν. Progress can be
achieved by starting from ~ν ≤ 1 zero-energy eigenstates of
the V0 hard-core model, in which only the m ¼ 0 Haldane
pseudopotential is nonzero [13]. We will refer to these
states as seed states in the remainder of this Letter. Note
that the manifold of seed states is large and includes many
states that are not relevant at low energies. However, our
assumption is that the Coulomb interaction will select a
ground state from among those states on the basis ofm > 0
Haldane pseudopotentials. What is crucial for what follows
is that seed states are not influenced by the short-range
interactions that break the SU(4) symmetry because they
have zero probability for the spatial coincidence of par-
ticles. They can be written as a product of the Vandermonde
determinant and a SU(4) bosonic wave function, which
forces them to have filling factors ~ν ≤ 1 [14,15]. Because of
the Pauli exclusion principle, seed states include all the
single-component incompressible states like the Laughlin
states [16], single-component composite fermion states
[17,18], and Moore-Read states [19]. Several multi-
component states, like the spin-singlet Halperin state at
~ν ¼ 2=5 [4], also belong to this class.
We now demonstrate that many important incompress-

ible states with ~ν ∈ ð1; 4� are simply related to ~ν ≤ 1 seed
states. We first note that global particle-hole symmetry of
the N ¼ 0 LL maps eigenstates with ~ν ∈ ½0; 2� to eigen-
states at 4 − ~ν ∈ ½2; 4�. This reduces our task to construct-
ing states in ~ν ∈ ð1; 2�. In the following, we denote
multicomponent states by a vector specifying the partial
fillings of each nonempty component: ðν1;…; νkÞ, with
~ν ¼ P

iνi. (We require νi ≥ νiþ1 to avoid double counting
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states that are related by a global SU(4) transformation.)
Two simple mappings generate states in ~ν ∈ ½1; 2� from
seed states in ~ν ∈ ½0; 1�. The first is particle-hole conjuga-
tion restricted to two components, which maps (ν1, ν2) to
(1 − ν2, 1 − ν1) [12]. The second takes any seed wave
function with three components or less, i.e., ðν1;…; νkÞ
with k ≤ 3, and multiplies it by the Vandermonde deter-
minant of one of the empty components, producing a state
with flavor composition ð1; ν1;…; νkÞ. Particle-hole con-
jugation involving three components does not yield states
that cannot be obtained by combining these two rules.
We will focus on the states at ~ν ¼ p=3, with

p ¼ f1; 2; 4; 5g. The ~ν ≤ 1 seed states are well known.
The ground state for ~ν ¼ 1=3 is the Laughlin state, which is
a SU(4) ferromagnet. At ~ν ¼ 2=3, the single-component
particle-hole conjugate of the Laughlin state competes with
the two-component singlet state with flavor composition
(1=3, 1=3), which has lower Coulomb energy [20] and can
be thought of as a composite fermion state with negative
effective field [18]. At ~ν ¼ 4=3, we obtain two competing
states with flavor compositions (1, 1=3) and (2=3, 2=3),
obtained by the two-component particle-hole conjugation
from ~ν ¼ 2=3. These two states are well known from work
on the FQHE of spinful fermions. However, at ~ν ¼ 5=3 we
obtain two states by acting on the seed states at ~ν ¼ 2=3
with the second mapping. These states have flavor com-
positions (1, 2=3) and (1, 1=3, 1=3) The appearance of a
three-component state at ~ν ¼ 5=3 demonstrates that there is
no reason to anticipate a simple relationship between ~ν and
2 − ~ν states in graphene. The (1, 1=3, 1=3) state has not
previously been discussed as a possible jνj ¼ 1=3
ground state.
The energy of any state constructed via these mapping

rules can be calculated provided the energy of the seed state
is known. If the Coulomb energy per flux quantum of the
seed state is E~ν, then, the energies of the states obtained are,
respectively,

E2−~ν ¼ E~ν þ ð1 − ~νÞ2E1; E1þ~ν ¼ E~ν þ E1; (1)

where E1 ¼ − ffiffiffiffiffiffiffiffi
π=2

p
e2=2ϵl and l is the magnetic length.

This allows us to predict the energetic ordering of the ~ν ¼
p=3 states. At ~ν ¼ 4=3, the two-component particle-hole
conjugate of the singlet (2, 2=3, 2=3) has lower Coulomb
energy than the (1, 1=3) state. At ~ν ¼ 5=3, Eqs. (1) predict
that (1, 1=3, 1=3) has lower Coulomb energy than (1, 2=3).
This observation is important, because the state that has
been thought to be experimentally realized is (1, 2=3)
[10–12], not (1, 1=3, 1=3). We note that, although our
discussion has been centered around the incompressible
ground states, the mappings and Eqs. (1) apply equally well
to charged and neutral excited states generated from zero-
energy eigenstates of the V0 hard-core model.
Broken SU(4) symmetry.—It has become clear from

experimental [21,22] and theoretical [12,23–26] studies

that short-range valley-dependent corrections to the long-
range SU(4) symmetric Coulomb interactions play a
significant role in determining the ground state of the
quantum Hall ferromagnet state realized at neutrality
(~ν ¼ 2) in graphene. In this section, we describe their
influence on the N ¼ 0 fractional quantum Hall regime.
The symmetry-breaking interactions can be modeled as
zero-range valley-dependent pseudopotentials [26],

Ha ¼
X
i<j;σ

Vστ
i
σj0iijijh0jτjσ (2)

where τiσ is a Pauli matrix that acts on the valley degree of
freedom of particle i, σ ¼ fx; y; zg, j0iijijh0j projects the
pair state of particles i and j onto relative angular
momentum 0, and Vσ is a valley-dependent Haldane
pseudopotential. Because conservation of total crystal
momentum implies that the number of electrons in each
valley is conserved, we have Vx ¼ Vy ≡ V⊥. The system’s
weakly broken SU(4) symmetry is, therefore, characterized
by three parameters Vz, V⊥, and by the Zeeman field
strength h. The values of Vz and V⊥ are dependent on the
component of magnetic field perpendicular to the graphene
plane B⊥, whereas the Zeeman strength is determined by
the total magnetic field; therefore, their relative strengths
can be controlled by tilting the magnetic field away from
the 2DES normal.
We assume that the symmetry-breaking terms are not

strong enough to alter the Coulomb correlations of the
SU(4) model states. Much as in the case of standard
magnetic systems, the role of the anisotropy terms is to
select the four-component spinors assigned to wave func-
tion components. Since more than one incompressible state
might enjoy good Coulomb correlations at a given ~ν,
symmetry-breaking terms will also alter the energy balance
between these states. In order to compute the contribution
to total energy arising from the symmetry-breaking terms,
we separate the spinors into those that are completely filled
whose orbital wave function is a Slater determinant and
those that are fractionally filled whose orbital wave
function is a hard-core model zero-energy eigenstate
[27]. The total anisotropy energy per flux quantum is

ϵa ¼
1

2
trðPiHHF

i Þ þ trðPfHHF
i Þ − h

2
trðPiσzÞ; (3)

where Pi ¼ jχ1ihχ1j þ � � � þ jχkihχkj is the projector onto
the completely filled spinors, Pf ¼ νkþ1jχkþ1ihχkþ1j þ
� � � þ ν4jχ4ihχ4j is a weighed projector onto fractionally
filled spinors , σz is a Pauli matrix acting on spin, and
h ¼ gμBB=2. In Eq. (3) HHF

i is the anisotropy contribution
to the Hartree-Fock quasiparticle Hamiltonian that one
would obtain if there were no fractionally occupied
components,
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HHF
i ¼

X
σ

Vσ½trðPiτσÞτσ − τσPiτσ� − hσz: (4)

The spinors which appear in the projection operators are
fixed by minimizing the anisotropy energy. Equation (3)
follows from the hard-core assumption, and from the
following property of completely filled spinors:

ρ̂mðrÞjΨi ¼ 1

2πl2
jΨi; (5)

where ρ̂mðrÞ≡ P̂LLLð
P

iδðr̂i − rÞjχmiiihχmjÞP̂LLL is the
particle density projected to the mth completely filled
spinor. These equations can be viewed as a generalization
of the Hartree-Fock theory of integer quantum Hall
ferromagnets. In particular, Eq. (3) reproduces the
anisotropy energy expressions in Ref. [26] for the special
case of neutral graphene, i.e., for ν1 ¼ ν2 ¼ 1 and
ν3 ¼ ν4 ¼ 0. It also reproduces the expressions of
Ref. [12] for the special case where the fractionally filled
spinors are assumed to have canted antiferromagnetic order.
Equation (3) can also be used to compute anisotropy

energy contributions to the charge gaps. Assuming that
quasiparticle states in the broken symmetry case evolve
adiabatically from SU(4) states, we label them by SU(4)
quantum numbers. Quasielectron-quasihole pair states can
be labeled by integers that specify changes in the occupa-
tion numbers for each flavor relative to the incompressible
ground state. Assuming that flavor flips involve only the
fractionally filled and empty spinors, the integers satisfy
δNkþ1 þ � � � þ δN4 ¼ 0 [28]. We find that the gap of an
incompressible state is the SU(4) Coulomb gap plus the
following correction:

Δa ¼
X4
j¼kþ1

δNjhχjjHHF
i jχji: (6)

Ground states and gaps at ~ν ¼ p=3.—The hard-core
seed states at ~ν ¼ 1=3 and ~ν ¼ 2=3 do not experience the
short-range valley-dependent interactions [11,12]. At
~ν ¼ 1=3 we, therefore, expect a fully spin polarized
Laughlin state, with a remnant valley SU(2) symmetry.
The quasiparticles are, therefore, expected to be large valley
Skyrmions [5,29]. The gap is expected to be reduced by a
factor of approximately 5, relative to the single-component
case, to Δsky

1=3 ≈ 0.023e2=ϵl [5,29,30], possibly explaining
why it is unobservable in suspended graphene samples
[9–12,31]. At ~ν ¼ 2=3, we expect a fully spin polarized
valley-singlet state. Two types of quasiparticles might be
relevant at this filling fraction. In the absence of Zeeman
terms, quasiparticles could lower their Coulomb energy
by making flavor flips into the completely empty spinors.
This is the behavior found for composite fermion wave
functions at ~ν ¼ 2=5 [32]. A numerical study of SU(4)

flavor-reversed quasiparticles would be needed to quanti-
tatively assess this scenario at ~ν ¼ 2=3. At higher fields,
one would recover the picture of fully spin polarized
quasiparticles in the SU(2) valley space. The gap would
then be [20] Δ2=3 ¼ 0.0784e2=ϵl [33].
Anisotropy has a greater impact for ~ν ¼ f4=3; 5=3g. At

~ν ¼ 4=3, we have two candidate incompressible states,
namely, (1, 1=3) and (2=3, 2=3). To discuss their competi-
tion, it is convenient to perform a global particle-hole
transformation to the states (1, 1, 2=3) and (1, 1, 1=3, 1=3),
respectively. An analysis of the possible ordered phases
leads to the phase diagram in Fig. 1 (Supplemental Material
[34]). Experiments suggest canted antiferromagnetic order
at ~ν ¼ 2 [22] and are [12] consistent with V⊥=h ∼ −10.
According to the phase diagrams in Fig. 1, this would imply
that the (1, 1, 2=3) state is a collinear antiferromagnet
(CoAFM) in perpendicular field measurements, whereas
(1, 1, 1=3, 1=3) is a canted antiferromagnet (CaAFM). We
estimate that the critical field for the transition between
(1, 1, 2=3) and (1, 1, 1=3, 1=3) states is

Bc ¼
1

ð1 − h=jV⊥jÞ2
�
δϵc2=3
h

�
2

; (7)

where δϵc2=3 is the Coulomb energy difference per particle
between the single-component state and the singlet at
~ν ¼ 2=3 and all the quantities on the right-hand side of

(a) (b)

(c) (d)

FIG. 1 (color online). Phase diagrams for (a) (1, 1, 2=3),
(b) (1, 1, 1=3,1=3), (c) (1, 1, 1=3). The dashed lines are the
boundaries of the integer quantum Hall ferromagnet states at
neutrality [26]. The valley-dependent interaction parameters are
believed to place graphene in the CoAFM region for panels (a)
and (c) and in the CaAFM region for (b). FM, KD, and CDW
correspond to ferromagnet, Kekule-distortion, and charge-
density-wave phases, respectively (see the Supplemental Material
[34]). (d) Field dependence of the gap for the Laughlin-type state
(1, 1, 1=3), δN indicates the number of spin flips of the
corresponding quasielectron-quasihole pair.
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this equation are understood to be evaluated at 1 T. Exact
diagonalization studies find that δϵc2=3 ≈ 0.009e2=ϵl
[20,35–37]. (Composite fermion trial wave functions sig-
nificantly underestimate this difference, although they
correctly predict the ground state to be a singlet [38].)
In a SU(2) system like GaAs with symmetry broken
only by the Zeeman term, the transition at ~ν ¼ 2=3 occurs
at Bc ¼ ðδϵc2=3=hÞ2. Equation (7) reduces to this expression
for h ≪ jV⊥j because the anisotropy energy difference
between the CoAFM and CaAFM states is dominated by
Zeeman energies in this limit (Supplemental Material [34]).
We, therefore, obtain that Bc ¼ 4.7 T for jV⊥j=h ¼ 10 and
Bc ¼ 6 T for jV⊥j=h ¼ 5 [39], in agreement with experi-
ment [11]. An analysis of the gaps for the states at ~ν ¼ 4=3
indicates that the quasiparticles involve a few flavor flips
[41], in analogy with GaAs [36].
We will now discuss the competition at ~ν ¼ 5=3 between

the three-component state (1, 1=3, 1=3) and the two-
component state (1, 2=3). To the best of our knowledge,
previous theoretical studies have assumed that the incom-
pressible state at ~ν ¼ 5=3 is the (1, 2=3) Laughlin-type
state, although the exact diagonalization study of Ref. [42],
in which a finite Zeeman field was needed to stabilize the
Laughlin state at ~ν ¼ 7=3, did provide a contrary hint. Note
that ~ν ¼ 7=3 is the global particle-hole conjugate of
~ν ¼ 5=3. As previously shown, the singlet-type state
(1, 1=3, 1=3) has lower Coulomb energy. When anisotropy
is included, we find that the fully filled spinor of (1, 1=3,
1=3) is jK;↑i, while the fractionally filled spinors are
jK0;↓i and jK0;↑i (Supplemental Material [34]). The
anisotropy energy per flux quantum of this state exceeds
that of the (1, 2=3) CoAFM state by 2ðjV⊥j − hÞ=3. We,
therefore, predict a transition from (1, 1=3, 1=3) to (1, 2=3)
at the critical field,

Bc ¼
�

δϵc2=3
jV⊥j − h

�
2

; (8)

where all quantities in the right-hand side are evaluated at
1 T. For jV⊥j=h ¼ 10, we obtain Bc ¼ 0.045 T. (For
jV⊥j=h ¼ 5 we obtain Bc ¼ 0.23 T.) The transition field
is small because jV⊥j ≫ h. This is consistent with the
absence of an experimental transition in the field range
where the FQHE is clearly observable [11]. Our estimates
indicate, however, that this critical field increases with
tilted magnetic field, making the realization of the three-
component ν ¼ 1=3 state an experimental possibility [41].
Finally, we apply our formalism to determine the charge

gaps of the particle-hole equivalent Laughlin-like states at
~ν ¼ 5=3 and ~ν ¼ 7=3, namely, (1, 2=3) and (1, 1, 1=3). In
the perpendicular field configuration, these states are
expected to be in the CoAFM phase (Supplemental
Material [34]). For this state, there are two kinds of
quasiparticles involving flavor flips. The first involves flips
from the completely filled spinors. These quasiparticles

have lower Coulomb energy but considerably larger
anisotropy energy and are, thus, likely irrelevant in experi-
ment (Supplemental Material [34]). We will focus on the
second kind, which involve flips between the fractionally
filled and the empty spinors. For the CoAFM state (1, 1,
1=3), we can choose the completely filled spinors to be
jK;↑i, jK0;↓i, and the 1=3 filled spinor to be jK0;↑i. The
quasiparticles can lower their energy by flavor flips from
the spinor jK0;↑i into the unoccupied spinor jK;↓i. The
anisotropy contribution to the gap from Eq. (6) per flavor
flip is simply 2h, the conventional single spin-flip Zeeman
gap. This is analogous to the situation of GaAs at ~ν ¼ 1=3,
where one expects the quasiparticles of the Laughlin state
to involve a few spin flips up to magnetic fields ∼10 T
[30,43–46]. Hence, it is likely that the quasiparticles of the
~ν ¼ f5=3; 7=3g states in graphene involve a few spin flips
as well.
Let us assess this scenario quantitatively. The conven-

tional Coulomb gap of the Laughlin state without flavor
flips is Δ0

1=3 ≈ 0.1036e2=ϵl [47]. The gap for a single flip
corresponds to a spin-flipped quasielectron and a no-flip
quasihole pair, and it is about Δ1

1=3 ≈ 0.075e2=ϵl
[30,43,44,46]. The gap for two flavor flips, Δ2

1=3, is known
with less accuracy but can be estimated to be lower than
Δ1

1=3 by about 0.01e2=ϵl [30,45,46], and it is expected to
correspond to a single spin-flipped quasielectron and single
spin-flipped quasihole pair. The predicted gap behavior is
depicted in Fig. 1 and is in good agreement with experiment
[10,11]. Figure 1 indicates that for most of the range probed
in Refs. [10,11] the relevant quasiparticles involve a single
spin flip.
In summary, we have developed a method to construct

multicomponent incompressible and quasiparticles states
for the N ¼ 0 LL of graphene, starting from V0 hard-core
model seed states. We have provided simple variational
formulas to determine how the short-range valley-
dependent interactions select the broken-symmetry ground
states and influence their gaps. We have applied this
formalism to study the ground states and quasiparticles
at ~ν ¼ p=3, revealing a previously unnoticed state with
lower Coulomb energy than the Laughlin state at ~ν ¼ 5=3.
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