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We consider time-reversal-symmetric two-channel semiconducting quantum wires proximity coupled to
a conventional s-wave superconductor. We analyze the requirements for a nontrivial topological phase and
find that the necessary conditions are (1) the determinant of the pairing matrix in channel space must be
negative, (2) inversion symmetry must be broken, and (3) the two channels must have different spin-orbit
couplings. The first condition can be implemented in semiconducting nanowire systems where interactions
suppress intra-channel pairing, while the inversion symmetry can be broken by tuning the chemical
potentials of the channels. For the case of collinear spin-orbit directions, we find a general expression for
the topological invariant by block diagonalization into two blocks with chiral symmetry only. By projection
to the low-energy sector, we solve for the zero modes explicitly and study the details of the gap closing,
which in the general case happens at finite momenta.
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Majorana fermionic bound states (MBS) are theoreti-
cally predicted to exist at the boundaries of topological
superconducting states [1] and to have non-Abelian
exchange statistics [2]. They are, therefore, promising
proposals for realizations of elements of topological quan-
tum computation [3], and currently there is an extensive
search for candidate systems. Promising suggestions are
hybrid condensed matter systems with s-wave supercon-
ductors proximity coupled to materials with strong spin-
orbit coupling [4–7]. Recent theoretical proposals [8–10]
for 1D and quasi-1D [11,12] topological superconducting
systems and first experimental results [13–15] have
received wide interest. Interestingly, the non-Abelian
nature of the Majorana bound states can be explored also
in 1D systems in a wire-network geometry [16,17].
All of the above refers to superconducting systems in the

topological symmetry class D [7], where breaking of time-
reversal symmetry (TRS) leads to a single localized MBS.
With additional symmetry (BDI class) multiple nondisor-
dered protected MBS are also possible in multichannel
systems [18,19]. Recent papers have considered the pos-
sibility of realizing 1D topological superconductor systems
with time-reversal symmetry (class DIII), supporting
Majorana Kramers doublets in hybrid structures based
either on superconductors with dx2−y2-wave [20] or
s�-wave [21] pairing, noncentrosymmetric superconduc-
tors [22], bilayer 2D superconductors with spin-orbit
coupling [23], or on 1D two-band models with a conven-
tional s-wave supercoductor [24,25] under the assumption
of a π phase difference between the pairing potentials in the
two bands, mimicking the s� pairing considered in
Ref. [21]. It is interesting to note that, even though two
local MBS together form a usual fermion, the exchange of
two Kramers pairs of MBS also constitutes a non-Abelian
operation [26]. Moreover, just as for single MBS, the

Kramers MBS can be detected either by tunneling spec-
troscopy or via unusual current-phase relations in a
Josephson junction to an ordinary s-wave superconductor
[27].
In this Letter, we investigate a model with two channels

coupled to an s-wave superconductor; see Fig. 1. The two
channels (wires) could be either two transverse modes in a
single nanowire or separate nanowires, as illustrated in
Fig. 1. We demonstrate that interwire pairing can give rise

FIG. 1 (color online). Top: Sketch of the geometry of the two-
channel (or two-wire) superconducting system. Bottom: General
structure of the low-energy bands at the gapless transition point.
Because the blocks in the block-diagonal Hamiltonian have chiral
symmetry, the bands that cross at zero energy are related by C,
which means E2ðpÞ ¼ −E3ðpÞ, while the bands that cross at
p ¼ 0 are related by TRS, T ∶E1ðpÞ ¼ E2ð−pÞ. Finally, particle-
hole symmetry implies P∶E2ðpÞ ¼ −E4ð−pÞ. This plot is
generated using the model in Eq. (1), which assumes collinear
spin-orbit coupling. However, it should be emphasized that the
general structure is preserved even without this assumption.
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to a topologically nontrivial phase with Kramers MBS at
the ends. This relies only on having different spin-orbit
coupling in the two wires and on the square of the interwire
pairing being larger than the product of the intrawire
pairings. In a conventional (i.e., constant phase) s-wave
superconductor, the latter condition cannot be achieved
without interactions [21]. However, intrawire pairing can
be significantly suppressed by repulsive intrawire inter-
actions [28–30], thus enhancing the role of the interwire
pairing.
Our analysis is carried out under the simplifying

assumption of a collinear spin-orbit coupling axis in the
two wires. However, the structure of the low-lying energy
bands (shown in Fig. 1) relies entirely on the TRS and is,
therefore, preserved even when relaxing this assumption. In
the case of collinearity, the Hamiltonian can be block
diagonalized into two blocks related by time reversal T and
particle-hole P transformation. Each individual block has
merely chiral symmetry C and is simple enough that we can
give an analytical expression for the corresponding (class
AIII) topological invariant, which changes with the gap
closings.
The Bogoliubov–de Gennes Hamiltonian for the TRS

two-channel nanowire system is

HBdG ¼ 1

2

Z
∞

−∞
ΨþðxÞHΨðxÞdx; (1)

where the first-quantization Hamiltonian is (ℏ ¼ 1)

H ¼
�
p2

2m
− μþ Vλz þ tλx þ ðαþ γλx þ βλzÞpσz

�
τz

þ ðΔ0 þ Δ3λz þ Δ1λxÞτx; (2)

where μ is the chemical potential, V is the difference in
electrical potentials, α and β are the symmetric and anti-
symmetric parts of the spin-orbit coupling coefficients, γ is
the interwire spin-orbit coupling, and Δ0 � Δ3 and Δ1 are
the intrawire and interwire pairing potentials, respectively.
Pauli matrices σ, λ, and τ act on the three two-dimensional
spaces: spin, wire index, and electron-hole, respectively. In
writing Eq. (2), we have used the conventional Nambu
basis: ΨðxÞ ¼ ðΨ↑ðxÞ;Ψ↓ðxÞ;Ψ†

↓ðxÞ;−Ψ†
↑ðxÞÞ.

The Hamiltonian (2) belongs to the topological sym-
metry class DIII with both antiunitary particle-hole and
time-reversal symmetries, and hence unitary chiral sym-
metry [7,31]. In our basis, T ¼ iσyK, P ¼ σyτyK, and
C ¼ iT P, where K is complex conjugation. Because
the Hamiltonian is block diagonal in spin space, we can
write it as

H ¼
�
Hp;↑ 0

0 Hp;↓

�
; Hp;σ ¼

�
H0

p;σ Δ
Δ −H0

p;σ

�
;

(3)

where H0
p;σ and Δ are 2 × 2 matrices in wire-index space.

The two blocks in Eq. (3) are related by time-reversal
and particle-hole symmetry, T Hp;↑T −1 ¼ H−p;↓ and
PHp;↑P−1 ¼ −H−p;↓, which means that each block only
has chiral symmetry CHp;σC−1 ¼ −Hp;σ. Considered sep-
arately, the Hamiltonian in each block belongs to symmetry
class AIII [7]. The gap of the spectrum of H vanishes for
certain parameters, indicating a potential topological tran-
sition. The gap closing happens at finite momenta, which
distinguishes this system from the above-mentioned
s�-wave pairing models [32]. This is illustrated in
Fig. 1, which shows the generic situation for the low-
energy bands at the point where the gap closes.
To establish that the closing and reopening of the gap is

associated with a topological transition, a topological
invariant is required. Since Hp;σ (in AIII) lacks particle-
hole symmetry, a Pfaffian cannot be defined as for class D
systems [1]. Nevertheless, we can still extract information
about the sign of the gap from the square root of the
determinant of the Hamiltonian. Transforming Hp;σ to

UHp;σU† ¼
�

0 Δ − iH0
p;σ

Δþ iH0
p;σ 0

�
; (4)

using U ¼ expðiτxπ=4Þ, the determinant reads

detðHÞ ¼ j detðΔþ iH0
p;↑Þj2j detðΔþ iH0

p;↓Þj2; (5)

suggesting that the sign of the gap is encoded in the
function Zp ¼ detðΔþ iH0

p;↑Þ ¼ detðΔþ iH0
−p;↓Þ. In

fact, the winding number of zp ¼ Zp=jZpj ¼ expðiθpÞ,
defined as

W ¼ 1

2πi

Z
p¼∞

p¼−∞

dz
z
¼ 1

2π

Z
∞

−∞
dp

dθp
dp

; (6)

takes only integer values since zp¼∞ ¼ zp¼−∞, and the
topological invariant associated with the Z2 classification
of the full class DIII Hamiltonian is given by Q ¼ ð−1ÞW,
similarly to the analysis by Tewari and Sau for BDI
symmetry class models [33]. Nontrivial values of the
winding number (topological invariant) are always related
to the changes in the topology of the gapped system. In our
model it corresponds to the number of Majorana bound
states at each end of the nanowire.
Since, however, the winding number in Eq. (6) is not

well suited for analytical evaluation, we shall instead
determine the condition for a topological state directly
from the determinant Zp. This is done by first identifying
the p values at which ImZp ¼ 0, giving two solutions:
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p1ð2Þ ¼ −mαþmγΔ1

Δ0

þmβΔ3

Δ0

� p0;

p2
0 ¼ 2m

�
μþ tΔ1

Δ0

þ VΔ3

Δ0

�
þm2

�
αþ γ

Δ1

Δ0

− β
Δ3

Δ0

�
2

:

(7)

Therefore, when p runs from −∞ to þ∞, the complex
number Zp crosses the real axis exactly 2 times and
encloses the origin if and only if

Q ¼ sgn½Zp1
Zp2

� ¼ −1: (8)

We can now draw some general conclusions. Firstly, it is
straightforward (see Supplemental Material [34]) to show
that the eigenvalues of the pairing matrix Δ must have
different signs in order to have Q ¼ −1. In other words,
one must have detΔ ¼ Δ2

0 − Δ2
3 − Δ2

1 < 0. Secondly, if we
define an inversion symmetry by I ¼ λx, the Hamiltonian
is inversion symmetric if IHðpÞI ¼ Hð−pÞ. Setting the
terms that break inversion symmetry to zero, i.e.,
V ¼ α ¼ γ ¼ Δ3 ¼ 0, it can be seen that Q ¼ 1.
Therefore, inversion symmetry must be broken in order
to have a topologically nontrivial phase. Finally, it follows
that Q ¼ 1 if γ ¼ β ¼ 0, which means that the spin-orbit
matrix αþ γλx þ βλz must have two different eigenvalues.
The full expression for the topological quantum number

Q can be found algebraically, but is in general rather
involved. Therefore, we present some special cases in the
following. First, we write the result for the case
Δ3 ¼ γ ¼ 0:

QΔ3¼0 ¼ sign½A2 − B2�;
A ¼ Δ2

0ðV2 þ δ2 − 2mαβV þ β2ðp2
0 þm2α2ÞÞ

þ t2δ2;

B ¼ 2Δ2
0βp0ðmαβ − VÞ; (9)

where δ2 ¼ Δ2
0 − Δ2

1. From this it is evident that β ≠ 0 is a
necessary condition for a nontrivial phase, in agreement
with the above general conclusion. If we further take
α ¼ t ¼ 0, the condition becomes

K− < Δ1 < Kþ; (10)

with K� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2β2μm

p
Þ2 þ Δ2

0

q
. Clearly, this expres-

sion requires Δ1 > Δ0, which (as discussed in the intro-
duction) could be realized due to repulsive interactions.
Below, we look at the more general case of different
intrawire pairings, in which case only Δ2

1 > Δ2
0 − Δ3

3 is
required. In Fig. 2 the structure of the transition is shown
for the Δ3 ¼ 0 case. The top panels show the spectrum
before, at, and after a transition point. In the middle panels,
the corresponding Zp trajectories in the complex plane are
shown. Only when the parameter V is between the two

transition points does the trajectory encircle the origin,
which is topologically different from the situation with V <
Vc1 or V > Vc2. To illustrate the sign change of Q, the
lower-left panel shows the real parts of Zp1 and Zp2, which
have different signs only in the topologically nontrivial
regime, in accordance with the criterion in Eq. (8). Finally,
the two lower-right panels show phase diagrams in two cuts
of the parameter space, illustrating the robustness of the
topological phase.
Now consider a different geometry with different intra-

wire pairings, i.e., Δ3 ≠ 0. As an illustrative case, we can
choose the parameters as Δ0 ¼ Δ3 ¼ Δ1, which means that
the intrawire pairing in wire 2 is zero, while the interwire
pairing is half of the intrawire pairing in wire 1. Further,
taking α ¼ β and γ ¼ 0, meaning that only wire 1 has spin-
orbit coupling, the topological condition becomes
ð4tV þ Δ2

0ÞΔ2
0 þ 4t2V2 < 8mβ2t2ðμþ tþ VÞ. This could.

for example. be a good approximation, if one wire is badly
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FIG. 2 (color online). (a)–(c) Spectrum of the two-wire model
for three values of the potential difference V. In (a), the system is
in the trivial state, V < Vc1, (b) is at the transition point, V ¼ Vc1,
while (c) shows the gapped spectrum in the topological phase.
(d)–(f) The contour followed by the complex determinants Zp
from negative to positive values of p. In (d) the system is in the
trivial state, which means V smaller than the lowest critical value
Vc1 or larger than the largest critical value Vc2. In (e) the contours
go through the origin, which means that the gap closes at both
V ¼ Vc1 and V ¼ Vc2, while in (f) the contour encircles the
origin, signifying the topological state. The constant parameters
in the plots are α ¼ γ ¼ 0, Δ1 ¼ 10mβ2, Δ0 ¼ 5mβ2, t ¼ 0, and
μ ¼ 10mβ2, which gives Vc1 ¼ 4.19mβ2 and Vc2 ¼ 13.13mβ2.
(g)–(i) Examples of the topological phase space. In (g) the real
part of the Zp determinant at p ¼ p1 and p ¼ p2 is shown as a
function of V. For the topological criterion to be fulfilled, the
product of the two function must be negative, which occurs for V
between Vc1 and Vc2. (h) Phase diagram when varying the
potential V and the interwire tunneling t (same constant param-
eters as above), and (i) a phase diagram in the V-μ space (same as
above except Δ1 ¼ 5mβ2 and Δ0 ¼ 4mβ2).
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connected to the superconductor. The more general sit-
uation, when the intrawire pairing is finite in both wires, is
shown in Fig. 3.
A key feature of the topological phase is the existence of

localized states at the boundaries. In the following, we find
the general form of these modes using an effective model
containing the low-energy bands shown in Fig. 1 at the
transition point. The general form of the effective 1D
Hamiltonian follows by projection onto the low-energy
bands (see the Supplemental Material [34]):

Hlow ¼
�
p2

2m
− ~μ

�
τz þ vðpσz − pcÞτx; (11)

where pc is the momentum at which the gap closes and v
and ~μ are effective parameters. This model describes a
noncentrosymmetric superconductor because it contains
both s- and p-wave components of the superconducting
pairing potential and it is gapless when ~μ ¼ μc ¼ p2

c=2m. If
we consider a hard boundary and that the wires exist for
x > 0, it is easy to show from the secular equation that
solutions exist for τσ < 0 and ~μ > p2

c=2m. The two
solutions then take the form ψ1ð2ÞðxÞ ¼ χ1ð2Þf1ð2ÞðxÞ, in
terms of the spinors χ1¼ð0;1;0;iÞT and χ2 ¼ ð1; 0;−i; 0ÞT ,
and with f1 ¼ f�2 given by

f1ðxÞ ¼ Ae−xmv sinh
�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2v2 − 2~μm − 2imvpc

q �
; (12)

where A2 ¼ 8mvð~μ − μcÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2vpcÞ2 þ ðmv2 − 2~μÞ2

p
.

The two zero modes ψ1ð2Þ are notMajorana bound states,
because they are not eigenstates of P, but only of C. These
solutions are the chiral symmetry-protected Jackiw-Rebbi-
type topological solitons [35–37]. We can, however, make
linear combinations that are Majorana bound states. One
example of a linear combinations that gives MBS (i.e.,
which fulfills PψM ¼ ψM) is

ψM;1 ¼
iψ1 þ ψ2ffiffiffi

2
p ; ψM;2 ¼

ψ1 þ iψ2ffiffiffi
2

p : (13)

These are MBS and transform to each other under TRS:
T ψM;2 ¼ ψM;1 and T ψM;1 ¼ −ψM;2, which means that we
have a Kramers pair of MBS.
Finally, we consider the effect of a Zeeman term that can

split the two zero modes. The Hamiltonian (11) gets an
additional time-reversal symmetry breaking term:

HZ ¼ B · σ: (14)

If the field points along the spin-orbit direction, the chiral
symmetric states ψ1 and ψ2 are still eigenstates, but the
degeneracy is lifted by 2Bz. A more interesting case is
when the magnetic field is perpendicular to the spin-orbit
direction, for example, pointing in the x direction. Figure 4
represents the topological phase diagram in this case. Three
distinct phases correspond to different numbers N of MBS
in each end of the effective 1D system. At zero magnetic
field the nanowire belongs to the DIII topological
symmetry class and at a finite magnetic field to the BDI
class (with effective time-reversal symmetry T ¼ σxK).
Topological phase transitions to the phase with N ¼ 1 are
associated with the gap closing at zero momentum and can
be described by the equation jBj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvpcÞ2 þ ~μ2

p
. The

transition between phases N ¼ 0 and N ¼ 2 is related to
the gap closing at the Fermi momentum (p ¼ ffiffiffiffiffiffiffiffiffi

2m ~μ
p

) and
can be described by the equation vpc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 2v2m ~μ

p
.

Note that disorder that breaks the effective TRS splits the
N ¼ 2 MBSs, except at B ¼ 0 (which is the DIII situation
studied above), while the N ¼ 1 regions are stable and
merely reduce to class D.
To conclude, we have shown that a pair of time-reversal-

symmetric nanowires proximity coupled to a superconduc-
tor can be driven into a nontrivial topological phase which

FIG. 3 (color online). Topological phase diagram in the Δ1-Δ3

plane for Δ0 ¼ 2.5mβ2, α ¼ 2β, γ ¼ 0, V ¼ 3mβ2, and
μ ¼ t ¼ 10mβ2. The light gray region fulfills the condition that
detΔ < 0, while the orange (dark gray) region corresponds the
nontrivial topological phase.
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FIG. 4 (color online). Topological phase diagram for the low-
energy model [Eq. (11)] in the presence of a magnetic field,
assumed to be orthogonal to the z axis, and for pc ¼ 2vm.
Orange (dark gray) regions have single localized MBS, while the
light gray region has MBS doublets.
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supports a Kramers pair of Majorana bound states in each
end. The key ingredients are interwire pairing and different
spin-orbit interaction in the two wires. In the absence of
interwire pairing, one needs intrawire pairing with different
signs. With the assumption of parallel spin-orbit directions
in the wires, the topological structure of the model could be
determined from the AIII symmetric block diagonal parts
of the full Bogoliubov–de Gennes Hamiltonian. However,
we emphasize that the assumption of collinearity is not
crucial for the existence of the topologically nontrivial
phase. We have presented an analytical approach to find the
topological invariant, which allows a general examination
of the conditions for topological phases in systems using
only ordinary s-wave superconductors, proximity coupled
to wires with spin-orbit coupling.

We thank Yuval Oreg for useful discussions. The Center
for Quantum Devices is funded by the Danish National
Research Foundation.
Note added in proof.—A recent paper [38] investigates

the conditions for interaction-induced negative determinant
of the pairing matrix in a two wire setup.
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