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A dynamical method is introduced to study the effect of dimensionality on phase transitions.
Direct experimental measurements for the lower critical dimension for spin glasses is provided as an
example. The method makes use of the spin glass correlation length ξðt; TÞ. Once nucleated, it can become
comparable to sample dimensions in convenient time and temperature ranges. Thin films of amorphous
Ge:Mn alloys were prepared with thickness L ≈ 15.5 nm. Conventional behavior is observed as long as
ξðt; TÞ < L. At the measurement time tco, when ξðtco; TÞ ≈ L, the time dependence is observed to cross
over to exponential. These results are interpreted using spin glass dynamics, and are consistent with a lower
critical dimension for spin glasses, dl, between 2 < dl < 3.
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The relation between the spin glass phase transition and
dimensionality has previously been addressed through
static experiments. For example, the spin glass transition
temperature Tg has been measured for thin film materials in
order to change the spatial dimension from d ¼ 3 to d ¼ 2

to probe the spin glass lower critical dimension, dl.
However, extrapolations had to be introduced in order to
demonstrate that Tg → 0 as one approaches d ¼ 2. For the
first time, experiments presented in this Letter make use of
dynamical measurements to examine the effect of dimen-
sionality on the spin glass transition directly through the
known properties of the spin glass correlation length.
The spin glass correlation length has already been

shown to be a useful dynamical variable to probe length
scale dependent quantities [1]. Recent experiments by
Sahoo et al. [2,3] investigated aging and memory effects
in a super-spin-glass, a discontinuous metal-insulator
multilayer (DMIM), through temperature cycling magnetic
relaxation measurements. They were able to extract the spin
glass correlation length, “which seems to imply a crossover
from three- to two-dimensional growth of the correlation
length.” In particular, they suggest experiments that could
lead to the influence of dimensionality.
We make use of the growth of the spin glass correlation

length ξðt; TÞ with time t at temperature T. In addition, the
exponential increase of occupied states in the ultrametric
theory for spin glass dynamics [4] weighs most heavily
those states at the highest occupied barriers Δðt; TÞ, with
the barrier heights exhibiting a direct relationship to ξðt; TÞ
[5]. This Letter uses these relationships to probe the
dynamical behavior of a spin glass from dimensions
d ¼ 3 to d ¼ 2 using zero field cooled (ZFC) magnetiza-
tion measurements on amorphous Ge:Mn thin films. This
range of spatial dimensions spans the theoretical estimates
of the lower critical dimension dl for spin glasses, both for
Ising spins for which dl ¼ 2.5 [6], and for Heisenberg

spins for which Lee and Young [7] state that dl “is close to,

and possibly equal to, 3.”
As noted above, previous (static) studies of the effect of

dimensionality on spin glasses have used thin films of
different thicknesses to probe the decrease of the spin glass
transition temperature Tg as a function of film thickness.
Grandberg et al. [8] studied variable thickness films of
Cu:Mn (13.5 at.% Mn) from 104 to 20 Å. Their Fig. 3
displays a reduction in the freezing temperature from
roughly 60 to 25 K over their thickness range. They
extracted a crossover from typical behavior for bulk spin
glasses “…to a slowing down for the very thin films that
obeys a generalized Arrhenius law with a zero-temperature
critical point,” leading to “…a crossover from three- to two-
dimensional spin glass dynamics when one spatial dimen-
sion is gradually diminished to a finite size.” While these
studies are suggestive, they depend upon extrapolations for
their conclusions.
The dynamics of the spin glass phase offers a much more

direct approach for study of the effects of dimensionality. In
particular, one can examine the effects on the ZFCmagneti-
zation of the growth of the spin glass correlation length
ξðt; TÞ, from nucleation to the thickness of a thin film,
L. Let tco be the time for ξðtco; TÞ ¼ L. For times t < tco,
the system behaves as though d ¼ 3. When t > tco, the spin
glass dynamics are those of d ¼ 2, and presumably should
vanish for ξðt; TÞ ≥ L if dl > 2. However, in analogy with
percolation theory [9], regions for ξðt;TÞ<L do not know
of the limiting dimension L, and, hence, remain in the
d ¼ 3 spin glass state. There should be a largest barrier
associated with ξðtco; TÞ ¼ L, Δmaxðtco; TÞ, through the
relationship established in [5],

Δðt; TÞ
kBTg

¼ 1

c2

�
ln

�
ξðt; TÞ
a0

�
− ln c1

�
; (1)
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where the constants c1, c2 are defined by the growth
expression for the spin glass correlation length ξðt; TÞ,

ξðt; TÞ
a0

¼ c1

�
t
τ0

�ðT=TgÞc2
: (2)

This form for ξðt; TÞ follows from theoretical expressions
for the spin-glass correlation length: ξðt; TÞ ∼ tαðTÞ [10–12].
Kisker et al. [11] found αðT ¼ 0.2Þ ¼ 0.026 and
αðT ¼ 0.7Þ ¼ 0.081, with their Tg ¼ 0.9, leading to
0.12 < c2 < 0.13 for 0.22 ≤ T=Tg ≤ 0.78. The coefficient
c1 is of order unity [10–12], a0 is the average spacing
between spins, and the characteristic exchange time,
τ0 ≈ ℏ=ðkBTgÞ. For comparisonwith spin-glass experiments
on other materials, Joh et al. [5] found c1 ≈ 0.53 and
c2 ≈ 0.132 for the thiospinel CdCr1.7In0.3S4.
As interpreted experimentally [13], after rapid cooling

in a ZFC experiment (see below for the experimental
protocol) to the measurement temperature T < Tg, diffu-
sion from the initial state is expressed as taking place along
an ultrametric tree [4,13], with ever higher free energy
barriers corresponding to increasing Hamming distances
surmounted as the measurement time increases. When the
magnetic field H is applied, the free energy barrier heights
are reduced by the change in Zeeman energy Ez (expressed
as a reduction in trap depth in Ref. [14]). For the states
with free energy barrier heights Δðt; TÞ < Ez, an instanta-
neous transition to the (now) lowest energy manifold
with magnetization MFC takes place, MFC denoting the
field-cooled (FC) magnetization appropriate to the applied
field H. This instantaneous increase is interpreted as the
reversible magnetization, MrevðTÞ.
As time continues to progress, there is diffusion in the

M ¼ 0 ZFC manifold to states with ever higher barriers
Δðt; TÞ. There is also diffusion in the reverse direction to
the hole in the lowest barrier energy states (smallest
Hamming distances) created by the change in Zeeman
energy Ez being larger than the respective free energy
barrier heights. This results in the gradual buildup of states
in theMFC manifold, causing the magnetization to increase
towards equilibrium as Mðt; TÞ → MFC. As a consequence
of the bidirectional diffusion in the ZFC (M ¼ 0) manifold,
the buildup of the magnetization Mðt; TÞ is a complex
function of time, described by scaling similar to the strain
creep function for polymers [15–20]. If dl > 2, then this
picture should vanish at tco when ξðtco; TÞ≳ L.
However, as noted above, there will exist states in the

ZFC (M ¼ 0) manifold with ξðt; TÞ ≲ L associated with
the occupied states lying between free energy barriers
Ez ≤ Δ ≤ Δmaxðtco; TÞ. These states will continue to dif-
fuse to the hole created by Ez, leading to a continued
increase in magnetization with time. However, because of
the exponential increase of the number of states in an
ultrametric geometry with increasing Hamming distance,
the diffusion in the other direction will be dominated by the
highest barrier Δmaxðtco; TÞ. Thus, the increase of the

magnetization for t ≥ tco will be exponential in time, with
an activation energy given by Δmaxðtco; TÞ. This argument
obeys a crucial test. Namely, Eq. (1) relates Δmaxðtco; TÞ to
ξðtco; TÞ, or more succinctly, to Eq. (1) with ξðtco; TÞ
replaced by L. We shall see that the experiments reported
here obey this condition.
The Ge:Mn thin films were prepared by 20 keV energy

Mnþ ions implanted into a 3-inch diameter, 0.5 mm thick
Ge(100) wafer with a dose of 1.5 × 1016= cm2 at a 7° tilt
angle and constant temperature of 300 °C. Cross-sectional
high-resolution tunneling electron microscope images
show formation of a ∼15.5 nm thick, uniform, amorphous
Ge:Mn layer. Grazing-incidence synchrotron x-ray diffrac-
tion studies did not detect any significant presence of
binary phases of Ge and Mn. Moreover, Mn 2p synchro-
tron x-ray absorption spectra shows that there is no long-
range crystallographic order and localized Mn moments are
located in a spherically symmetric environment [21]. The
average Mn concentration in the amorphous region is
∼6.71 × 1021=cm3 ≈ 11 at.%, as determined from secon-
dary ion mass spectrometry data (not shown), equivalent
to an average Mn-Mn spatial separation of a0 ≈ 5.3 Å.
Temperature dependent magnetization experiments
exhibit a spin glass phase, with Tg ≈ 24 K at 50 G field
(Fig. 1, inset).
This material has a phase diagram [21,22], not unlike

that of EuxSr1−xS for x > 0.5 [23]. For amorphous Ge:Mn,
at the concentration of our sample, ≈11% Mn, a transition
from paramagnetism to ferromagnetism takes place as the
temperature is lowered, followed by a transition to the spin
glass state at 24 K (for 50 G field). The ferromagnetic state
is characterized by an S-shaped hysteresis with a very small
coercive field (≲2 G). The inset in Fig. 1 displays a FC
magnetization that rises rather rapidly with decreasing

FIG. 1 (color). The ZFC magnetization Mðt; TÞ of the Ge:Mn
amorphous thin film plotted against time, with the zero of time
taken at the time the temperature is stabilized. The inset displays
the ZFC and FC magnetizations as a function of T.
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temperature below Tg, most probably associated with the
remnants of the ferromagnetic network destroyed by the
random field generated by the spin glass structure [24–27].
We presume that the response time of this contribution is
rapid on the time scale of our measurements, so that they
would not show up in the difference between the ZFC and
FC measurements. The vanishing of this difference defines
the glass temperature Tg, and all of our experiments and
analysis depend solely on that difference.
Another feature of our measurements is the use of the

rise in the ZFC magnetization as opposed to the decay of
the thermoremanent magnetization (TRM). We are inter-
ested in finding when the conventional (d ¼ 3) rise of the
ZFC magnetization ends [presumably when ξðtco; TÞ ¼ L
for dl > 2]. Stability of the superconducting quantum
interference device (SQUID) and other backgrounds make
absolute measurements difficult. It proves more accurate to
relate the measured rise of the ZFC magnetization to
the FC magnetization measured at the same temperature.
Subtraction of the asymptote of the exponential rise of the
ZFC magnetization from the difference between the mea-
sured time dependence of the ZFC magnetization and the
measured FC magnetization would give (and does) a zero
magnetization reading when the crossover from d ¼ 3 to
d ¼ 2 takes place for conventional spin glass dynamics,
allowing us to extract the crossover time tco from our
measurements.
The experiments were performed using a Quantum

Design dc-SQUID magnetometer following the no-over-
shoot (NOS) cooling protocol of Rodriguez et al. [20]. This
SQUID has a sensitivity of ∼10−7 emu and a temperature
stability of �1 mK. A paramagnetic Sm2CuO4 sample was
used to measure the superconducting magnet’s offset
magnetic field (∼1.40 G), with that field offset defined
as H ¼ 0.
The sample temperature was quenched rapidly from

well above Tg, to the measurement temperature T, without
ever exceeding T throughout the cooling protocol, in
accordance with the NOS protocol of [20]. This ensures
that the effective waiting time, teffw , is a minimum, and much
less than the measurement times in our experiments.
Immediately after the sample temperature was stabilized
at T, an in-plane magnetic field H ¼ 50 G is applied and
the time-dependent magnetization measured. At zero wait-
ing time, we estimate teffw ∼ 56 s, arising primarily because
of the time for the superconducting magnet to reach its final
field value.
Because of the small exponent c2 in Eq. (1), the

accessible temperature range over which measurements
could be made was very narrow. For temperatures below
about 20 K (T=Tg < 0.83), the response times were much
too long to probe on ordinary laboratory time scales, while
for temperatures above about 22 K (T=Tg > 0.92), the
response time was much too short for meaningful mea-
surements, in addition to a small magnetization difference
leading to large experimental error. Figure 1 exhibits the

growth of the ZFC magnetization as a function of time for
temperatures 20 K ≤ T ≤ 22 K.
If the arguments surrounding ξðt; TÞ ≈ L are correct, the

long time extrapolation of the rise of the ZFC magnetiza-
tion at a given temperature should be exponential in time.
It is more convenient and accurate to plot the differ-
ence log10½MFCðTÞ −Mðt; TÞ� vs t, as asymptotically
Mðt; TÞ ¼ MZFCðt; TÞ þMrevðTÞ → MFCðTÞ. The results
are exhibited in Fig. 2, where we use the measured values
for MFCðTÞ.
Using an Arrhenius law, we express τðTÞ, the

time constant of spin glass dynamics for t > tco, as
τðTÞ ¼ τ0 exp ½Δmax=ðkBTÞ�. We extract values of 1=τðTÞ
for the different measurement temperatures from the slope
of the data in Fig. 2. The values of log10½τðTÞ� vs T−1 are
plotted in Fig. 3, and are linear as expected. The values of
Δmaxðtco; TÞ=ðkBTgÞ extracted from τðTÞ are also plotted in
Fig. 3 and are independent of T. Importantly, they fall
within the range reported for other spin glasses in the
experimentally accessible timewindow [13]. The very large
error bars at T ¼ 22 and 21.5 K in Figs. 2 and 3 are partly
an artifact of the logarithmic scale, and intrinsic because of
equilibrium magnetic fluctuations as observed by Reim
et al. [28] for an insulating spin glass, and Svedlindh et al.
[29] for a metallic spin glass.
The crucial test is to see whether Eq. (1) is satisfied. To

best access the value of tco, we subtract the asymptotic
exponential fit of Mðt; TÞ in Fig. 2, MasymðTÞ, from
MFCðTÞ −Mðt; TÞ. The results are plotted in Fig. 4 for
each of the measured temperatures. The value of tco,
extracted from when the curves first reach zero, are also
plotted as the filled squares in the inset. Separately, the log
of the time tFC, defined by MðtFC; TÞ ¼ MZFCðtFC; TÞ þ
MrevðTÞ ¼ MFCðTÞ from Fig. 1, is plotted as the filled

FIG. 2 (color). The difference log10½MFCðTÞ −Mðt; TÞ� plotted
against t for temperatures within the measurement window. The
plot for T ¼ 21.5 K is omitted because the large fluctuations at
T ¼ 21.5 and T ¼ 22.0 Kwould overlap one another. The reason
for the much larger noise at T ¼ 22.0 K as compared to T ¼
21.0 K is partly an artifact of a logarithmic scale, and intrinsic
because of equilibrium magnetic fluctuations [28,29].
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circles in the inset. The time difference between the two
plots is the time for the remaining ZFC states with length
scales less than L to completely empty to the states with
magnetization MFC.
A quantitative fit to Eq. (1) with ξðtco; TÞ ¼ L and

Δmaxðtco; TÞ from Fig. 3 depends on the constants c1 and
c2. Because their values are not known, we plot consistency
with Eq. (1) of ξðtco; TÞ ≈ L in the inset in Fig. 4. We have
chosen the range for c2 to be that found by Kisker et al.
[11], resulting in c1 lying roughly between 0.3 and 0.45.
These values are not far off from those found for the
thiospinel CdCr1.7In0.3S4 [5], as previously noted.
In summation, dynamical measurements relying on the

growth of the spin-glass correlation length ξðt; TÞ in a thin

film have been used to probe the lower critical dimension
for spin glasses, dl. For times sufficiently short, ξðt; TÞ is
less than the film thickness L, and conventional time
dependences [16–19] for the growth of the magnetization
were observed. When ξðtco; TÞ ≈ L, the time dependence of
the growth of the magnetization changes its character from
conventional to exponential, with activation energy equal to
the largest barrier Δmaxðtco; TÞ surmounted during the
growth of ξðt; TÞ to L. This is dynamical evidence that
a spin glass state with finite Tg does not exist at d ¼ 2, and,
hence, that 2 < dl < 3, consistent with the numerical
findings of Franz et al. [6] for Ising spin glasses and
Lee and Young [7] for Heisenberg spin glasses, and
consistent with the extrapolation of the thin film spin glass
experiments of Grandberg et al. [8].
In addition, the remaining rise in magnetization after tco

was accounted for quantitatively through transitions from
the ZFC states occupied for ξðt; TÞ ≤ L. The exponential
increase in state degeneracy associated with ultrametric
symmetry generates an exponential time dependence for
transition of the ZFC states (M ¼ 0) to the states in the
MFC manifold with an activation energy Δmaxðtco; TÞ. The
critical test for this analysis, the relation between
ξðtco; TÞ ≈ L and Δmaxðtco; TÞ according to Eq. (1), is
satisfied. Finally, explicit values for the two parameters
present in the expression for ξðt; TÞ from Eq. (2), c1 and c2,
were determined within the confines of the range calculated
by Kisker et al. [11].
In summary, we have shown how one can use the growth

of the correlation length with time to probe the lower
critical dimension of a phase transition. Our direct deter-
mination of the length scale dependence of a phase
transition is in contrast to static measurements that often
depend upon extrapolations. Further, the ability to tune the
dynamics to convenient laboratory temperature and time
domains offers opportunities for probing the temporal and
spatial nature of the transition. We have used a specific
example of the verification of dl for spin glasses, but the
method is a general one with, we believe, broad applica-
tions in other mesoscopic systems.
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