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The ensemble-switch method for computing wall excess free energies of condensed matter is extended to
estimate the interface free energies between coexisting phases very accurately. By this method, system
geometries with linear dimensions L parallel and Lz perpendicular to the interface with various boundary
conditions in the canonical or grand canonical ensemble can be studied. Using two- and three-dimensional
Ising models, the nature of the occurring logarithmic finite-size corrections is studied. It is found crucial to
include interfacial fluctuations due to “domain breathing.”
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Interfaces between coexisting phases occur in many
contexts, such as nucleation of ice or water droplets in
the atmosphere [1,2], hadron condensation from the quark-
gluon plasma [3], etc. Interfacial free energies are driving
forces for phase separation kinetics (droplet coarsening)
[4], microfluidic processes [5], wetting and spreading
[6–8], and capillary condensation or evaporation [9–11].
These phenomena are fascinating problems of statistical
mechanics and have important applications (in nanoscopic
devices, materials science of thin films and surfactant layers
(e.g., [12]) extracting oil and gas from porous rocks
[9], etc.).
Thus, the theoretical prediction of interfacial free ener-

gies has been a longstanding problem (see [13–15] for
reviews). Mean-field type theories [16–18] neglect inter-
facial fluctuations (capillary waves [19–21]) and hence are
unreliable. Exact solutions exist in exceptional cases only,
e.g., the Ising model in d ¼ 2 dimensions [22]. Most efforts
to compute interfacial free energies use computer simu-
lation (e.g., [15,23–35]). However, often different variants
of these methods yield estimates disagreeing with each
other far beyond statistical errors; e.g., for the hard sphere
liquid-solid interface tension, discrepancies of about 10%
occur [33–36].
Finite-size effects are a possible source of systematic

errors, but often are disregarded due to a lack of a generally
accepted theoretical framework. But finite-size effects on
interfacial tensions are expected [37–43] and also of physical
interest for capillary condensation, nanoparticles, etc. These
effects are subtle due to the anisotropy introduced by a
(planar) interface: the linear dimension L parallel to the
interface constrains the capillary wave spectrum; the linear
dimension Lz in perpendicular (z) direction affects interface
translation as a whole. Also the choices of boundary
conditions (Fig. 1) and of statistical ensemble [e.g., canoni-
cal (c) vs grand canonical (gc)] matter.
This letter presents a discussion of these finite-size

effects affecting simulations and gives numerical evidence

for the d ¼ 2 and d ¼ 3 Ising model for our theoretical
results (that are believed to be of completely general
validity). Our simulation evidence was made possible by
extending the “ensemble switch method” [44–47] for wall
excess free energies to the computation of interfacial free
energies (Fig. 2). This new method is described next; at the
outset we stress that this method is not restricted to systems
possessing Ising-type symmetries between the coexisting
phases.
The basic idea is to compute the free energy difference

between two systems (1,2) differing only by the absence (1)
or presence (2) of interfaces [Fig. 2(a)]. Both systems have
the same degrees of freedom and the same volume. System
1 is split along the z direction into two halves (of linear
dimensions Lz=2), periodic boundary conditions are
applied to each part individually. The left part is in the
“spin up” phase (mþ > 0), the right part in the “spin down”
phase (m− < 0), imposing the constraint for the total
magnetization per spin m ¼ ðmþ þm−Þ=2 ¼ 0. The same

FIG. 1. Useful boundary conditions to study interfaces. For
simplicity, we specialize to a d-dimensional Ising system in a
box of linear dimension(s) L parallel to the interface(s) [shown
by thick wavy lines], and a linear dimension Lz perpendicular
to the interface. In parallel directions, periodic boundary
conditions (PBC) are applied throughout. The double arrows
indicate the sign of the magnetization (mþ > 0, m− < 0) in the
domains. hmþi ¼ mcoex, hm−i ¼ −mcoex, mcoex being the
spontaneous magnetization of the Ising model. Left side shows
antiperiodic boundary condition (APBC) in the z direction;
right side shows PBC in the z direction (then necessarily two
interfaces must occur).
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constraint applies to system 2, which contains two inter-
faces [consistent with the probability distribution PL;Lz

ðmÞ,
cf. Fig. 2(b)]. Thus, the Hamiltonian H0, H1 of the two
systems 1,2 differ only by the choice of boundary
conditions. Using a parameter κ with 0 ≤ κ ≤ 1, we
define a Hamiltonian HðκÞ¼κH1þð1−κÞH0, and
the free energy FðκÞ¼−kBT lnðTrfexp½−HðκÞ=kBTgÞ,
T ¼ absolute temperature, kB ¼ Boltzmann0s constant.
The (dimensionless) interfacial tension then is

γL;Lz
¼ ð2Ld−1kBTÞ−1½Fð1Þ − Fð0Þ�; (1)

where 2Ld−1 is the total interfacial area. This free energy
difference is computed by thermodynamic integration; i.e.,
dividing the interval for κ into a number of discrete values
κi and considering Monte Carlo moves κi → κi�1,
Fðκiþ1Þ − FðκiÞ is obtained via a parallelized version of
successive umbrella sampling [44,45,48]. On each core, the

system can switch between two adjacent values κi and κiþ1.
The logarithm of the ratio of the number of occurrences in
two adjacent states corresponds to the difference in free
energy. We expect–and have verified–that this method
yields results equivalent to the estimates [2,26,27] γL;Lz

¼
ð2kBTLd−1Þ−1 lnðPmax=PminÞ drawn from sampling PL;Lz

,
cf. Fig. 2(b).
This new method has numerous advantages: (i) it can be

applied to cases such as liquid-solid interfaces, for which
probability distribution methods are difficult to apply [32]
and (ii) the generalization to antiperiodic [APBC, Fig. 1(a)]
or surface field (or fixed spin) boundary conditions is easy.
In these cases, both the canonical ensemble (m fixed, e.g.,
m ¼ 0) and the grand canonical ensemble (m freely
fluctuates from about −mcoex to about þmcoex) can be
used. Note that for κ ¼ 0, the boundary conditions are
always periodic in all directions, while for κ ¼ 1, one can
use either PBC or APBC in z direction. We will show that a
comparative study of such choices is illuminating.
For L and Lz large enough, the leading finite-size

effects are described by two logarithmic corrections of
opposite sign,

γL;Lz
¼ γ∞ − x⊥

lnLz

Ld−1 þ x∥
lnL
Ld−1 þ

const
Ld−1 ; (2)

with γ∞ being the interfacial tension in the thermodynamic
limit. While the constant in the last term is nonuniversal
(depends on the model and on temperature), the constants
x⊥ and x∥ only depend on the ensemble and the boundary
conditions (see Table I for numerical values). Translational
freedom of the interface(s) in the z direction contributes to
the first logarithmic term only, capillary waves to the
second term, and domain breathing (explained below)
contributes to both. In the following, these effects and
the values of the universal constants will be motivated and
verified by computer simulations in the Ising model in two
and three dimensions.
The correction with x⊥ is simply interpreted as due to the

translational entropy of the interface(s). If an interface is
able to move freely in the z direction [e.g., in APBC(gc)],

(a)

(b)

FIG. 2. (a) Schematic explanation of the “ensemble switch
method” to find the interfacial free energy. A system is con-
structed as a linear combination of two Hamiltonians
HðκÞ ¼ κH1 þ ð1 − κÞH0, where H1 is the desired system of
interest (containing interfaces). H0 consists of two separate
systems of half the linear dimension Lz each, and with PBC
each so that no interfaces occur, and 0 ≤ κ ≤ 1. The free energy
difference between the states withHðκ ¼ 0Þ andHðκ ¼ 1Þ yields
twice the interfacial free energy γ. (b) Sampling the probability
distribution PL;Lz

ðmÞ where m is the total magnetization per spin
of a system with PBC throughout, one finds two sharp peaks (of
height Pmax) and a flat minimum (of height Pmin) in between,
with γ ¼ lnPmin=ð2kBTLðd−1ÞÞ. Data are for the case d ¼ 3,
L ¼ 20, kBT=J ¼ 3.0 Ising model.

TABLE I. Values of the universal constants in two and three
dimensions. The universal constants only depend on the boun-
dary conditions (periodic or antiperiodic) and the ensemble
(canonical or grand canonical). Note that x⊥ is independent of
the dimensionality of the interface while x∥ depends on d because
it results from capillary wave effects and (4).

d BC ensemble x⊥ x∥

2 antiperiodic grand canonical 1 1=2
3 antiperiodic grand canonical 1 0
2 antiperiodic canonical 1=2 1
3 antiperiodic canonical 1=2 1
2 periodic canonical 3=4 3=4
3 periodic canonical 3=4 1=2
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this corresponds to a translational entropy of the form
kB lnðLzÞ, yielding x⊥ ¼ 1 (Fig. 3). While this is well
known (e.g., [32,41]), our results for a canonical ensemble
with periodic or antiperiodic boundary conditions, where
the translational freedom of the interface(s) is constrained,
are new. We stress that the case APBC(c) is not equivalent
to a “clamped” interface (with x⊥ ¼ 0 [41]): When m ¼
ðmþ þm−Þ=2 ¼ 0 in Fig. 1(a), still fluctuations of mþ,m−
occur, δmþ ¼ mþ −mcoex, δm− ¼ m− þmcoex. These
fluctuations correlate with a fluctuation of the interface
position around its mean value. The distance Δ is found
from m¼mþðLz=2−ΔÞþm−ðLz=2þΔÞ as Δ ≈ δmþLz=
ð2mcoexÞ. Using for δmþ near mcoex that the probabi-
lity distribution is a Gaussian PL;Lz=2ðδmþÞ ∝
expf−ðδmþÞ2Ld−1Lz=ð4kBTχcoexÞg, χcoex being the
susceptibility at equilibrium, we find for this “domain
breathing,”

hΔ2i ¼ kBTχcoex
4m2

coex

Lz

Ld−1 . (3)

The translational entropy due to fluctuations is
kB lnð

ffiffiffiffiffiffiffiffiffiffi

hΔ2i
p

=aÞ, a being the lattice spacing. In γL;Lz
, this

yields a correction term Δγ,

Δγ ¼ −
1

2

lnLz

Ld−1 þ
�

d − 1

2

�

lnL
Ld−1 þ

const
Ld−1 . (4)

Thus, for the case APBC(c) the result is x⊥ ¼ 1=2, as stated
in Table I. For PBC(c) this result holds with respect to the
distance between the interfaces, but the whole positive
domain [Fig. 1(b)] can freely translate as a whole. Adding
the terms x⊥ ¼ 1=2 and x⊥ ¼ 1 for these two degrees of
freedom and dividing by the number (2) of interfaces then
yields x⊥ ¼ 3=4. These values are nicely compatible with
our numerical results (Fig. 3). Preliminary data for a
Lennard-Jones (LJ) fluid at T=Tc ¼ 0.78 (Tc is the
vapor-liquid critical temperature) are also included (lengths
are in units of the LJ diameter) and compatible with the
predicted value of x⊥.
Of course, in (2), one cannot take the limit Lz → ∞ at

fixed L. There exists a length Lz;0 where γL;Lz
would

become zero: for Lz > Lz;0 the system can spontaneously
break up in multiple domains [11]. Indeed, in the limit
Lz → ∞, the typical distance between domain walls is ξ∥ ∝
Lð3−dÞ=2 expðγLd−1Þ (the pre-exponential factor is attributed
to capillary waves in [37]), and one expects Lz;0 to be of the
same order as ξ∥. Our numerical studies (Fig. 3) have been
taken such that Lz ≪ Lz;0.
To discuss x∥, a correction due to the finite-size effect on

the capillary waves spectrum has to be taken into account,
namely [37] ð3 − d=2Þ lnðLÞ=Ld−1. Ignoring possible
lnðlnLÞ corrections right at d ¼ 3 [49], one obtains for
the APBC(gc) case the values given in Table I. For the cases
APBC(c) and PBC(c), one has to include ð3 − dÞ=2 for
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FIG. 3 (color online). Interfacial tension γL;Lz
for the d ¼ 2 (a),

(b) and d ¼ 3 (c) Ising model, plotted vs the scaling variable
L−ðd−1Þ lnLz at fixed L. (a) compares the cases APBC(c), PBC(c)
andAPBC(gc), for two temperatures,kBT=J ¼ 1.2,L ¼ 10, upper
three straight lines, and kBT=J ¼ 2.0,L ¼ 20, lower three straight
lines. The slopes are theoretical values x⊥ ¼ 1=2, 3=4 and 1,
respectively. (b) shows data for PBC(c) in d ¼ 2 at three temper-
atures; kBT=J ¼ 1.2, three top lines; kBT=J ¼ 1.6, three middle
lines; kBT=J ¼ 2.0, three lower lines; at three choices of L
(L ¼ 10, 20, 40, from top to bottom). These data show that the
slope (xL ¼ 3=4) neither depends on L nor on temperature. (c)
shows data for PBC(c) with d ¼ 3, kBT=J ¼ 3, and 5 choices ofL,
as indicated. (c) also shows preliminary data for aLJ fluid (see text).
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each interface, but one must also take into account (4),
resulting in x∥ ¼ ð3 − dÞ=2þ ðd − 1Þ=2 for APBC(c) and
x∥ ¼ ½2ð3 − dÞ=2þ ðd − 1Þ=2�=2 for PBC(c), where the
overall factor 1=2 for PBC(c) is due to the two interfaces in
the system. The constants for the case PBC(c) also apply
for the probability distribution method [Fig. 2(b)], different
from literature statements, where the above fluctuation
mechanism [Eq. (3)] was missed. Figure 4 shows excellent
agreement with these predictions, both for d ¼ 2 and
d ¼ 3; note that there is a single constant [from the term
constL−ðd−1Þ in Eq. (2)] adjusted in each curve. An
important check is that this constant is almost independent
of Lz, which shows that higher order corrections to Eq. (2)
are not needed in the cases shown. Also if we let x∥ as a free
parameter, we get results compatible with the theoretical
answers, which are summarized in Table I. An interesting
aspect is that for large enough Lz the convergence of the
APBC(gc) results is from below, while the APBC(c) results

converge from above: in the cases of interest, where γ∞ is
not known in beforehand, this property may give useful
bounds on the possible values of γ∞.
An intriguing question is the behavior of systems with

continuous spins with antiperiodic boundary conditions
[50]. As is well known, the “interface” then is spread out
over the full distance Lz, and the free energy cost is not of
order Ld−1 but rather Ld−1=Lz. While for one-component
systems, the interfacial width w depends on L but not on
Lz, and hence a translational entropy lnðLz=wÞ arises, now
w ¼ Lz and hence no term proportional to lnLz is expected
(and also not found [50]).
In summary, by discussing the interfacial tension in finite

systems as a function of both linear dimensions L and Lz
(unlike large parts of the previous simulation literature
which focused on L ¼ Lz) we have identified the mech-
anisms of the finite-size corrections. The knowledge of
these corrections allows us to obtain more reliable estimates
of the interfacial tension in the thermodynamical limit. A
crucial point is the comparison of different boundary
conditions (periodic or antiperiodic) and ensembles
(canonical or grand canonical). While the numerical exam-
ples are mostly from the Ising model, we stress that a fixed
spin boundary condition at z ¼ 0 and z ¼ Lz gives (in the
Ising model) results fully equivalent to the APBC case,
both for the grand canonical and canonical ensembles. This
can be easily generalized to arbitrary systems; e.g., for a
study of solid-liquid interfaces one needs to choose
boundary potentials that stabilize the solid on one wall
and the liquid on the other wall. Of course, in such cases it
is already a nontrivial matter to identify precisely the
conditions where phase coexistence occurs in the bulk.
Nevertheless, we expect that our analysis will be useful for
studies of many model systems and will also help to
understand possible experiments on interfacial phenomena
in nanoconfinement. We also mention that our treatment
can be extended to understand finite- size effects on droplet
free energies, hampering the estimation of Tolman’s length
[51,52] that describes curvature corrections to the surface
free energy of droplets.
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