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The constraint imposed by magnetic helicity conservation on the α effect is considered for both
magnetically and flow dominated self-organizing plasmas. Direct numerical simulations are presented for a
dominant contribution to the α effect, which can be cast in the functional form of a total divergence of an
averaged helicity flux, called the helicity-flux-driven α (Hα) effect. Direct numerical simulations of the Hα
effect are presented for two examples—the magnetically dominated toroidal plasma unstable to tearing
modes, and the flow-dominated accretion disk.

DOI: 10.1103/PhysRevLett.112.125003 PACS numbers: 52.30.Cv, 95.30.Qd, 98.35.Eg, 98.62.Mw

Large-scale magnetic fields have been observed in
widely different types of astrophysical objects, such as
planets and stars, as well as accretion disks and galaxies.
The source of this magnetic field is the well-known dynamo
effect, which has stimulated an extensive search for models
in which large-scale magnetic fields are self-generated
from turbulence and sustained despite the presence of
dissipation. The point of departure of most theoretical
and computational studies of this problem is magnetohy-
drodynamics (MHD), represented by intrinsically nonlinear
equations that describe the self-consistent evolution of a
magnetized fluid. A standard approach to the problem is
mean-field theory, in which a fluctuation-induced electro-
motive force (emf) parallel to the mean magnetic field is
obtained from the vector product of flow and magnetic field
fluctuations. This is known as the α effect, which holds a
key to how large-scale magnetic fields may grow out of
turbulence, beginning from a seed field.
While kinematic dynamo theory [1] predicts the exist-

ence of the α effect in astrophysical settings given a
complex velocity field, its magnitude and saturation in a
fully nonlinear, self-consistent theory has been a subject
of significant controversy. Since this problem appears to
be just as difficult as the problem of MHD turbulence, one
constructive approach is to examine the constraints
imposed by rigorous conservation laws of MHD on the
functional form of the α effect. In this context, the role of
magnetic helicity, which is a “rugged invariant” of MHD
turbulence [2], has received significant attention [3].
In this Letter, we revisit the role of magnetic helicity flux

on the α effect. We do so by considering two completely
different physical examples from a common perspective.
The first example is a magnetically dominated self-
organized toroidal plasma such as the reversed field pinch
(RFP) in which the α effect is instrumental in converting
one type of magnetic flux into another by the intervention

of tearing instabilities while the total magnetic energy
decays. The second example is a flow-driven accretion
disk, which too exhibits self-organization, and where there
is compelling evidence from several MHD simulations that
a large-scale magnetic field is produced and sustained by
the nonlinear evolution of the magnetorotational instabil-
ity (MRI). [4] The fluctuation-induced α effect due to the
MRI results in the generation of large-scale magnetic field,
which can cause MRI saturation [5]. We demonstrate by
analysis and direct numerical simulations (DNS) that in
both cases a dominant contribution to the α effect can be
cast in the functional form of a total divergence of an
averaged helicity flux, which we call the helicity-flux-
driven α effect (hereafter simply referred to as the Hα
effect), and is represented by the last term in Eq. (3). In the
case of the RFP, the Hα effect reduces to “hyper-
resistivity” [6–9], often invoked by the MHD turbulence
community but demonstrated here to emerge from DNS of
tearing modes. In the case of the accretion disk, the Hα
effect leads to a new type of flux that is related to, but is
more complete than, the so-called Vishniac-Cho flux [10],
which was obtained by a heuristic reduction of the non-
linear MHD equations, and has been invoked in recent
astrophysical dynamo studies [11,12]. Here, we demon-
strate from a global MRI simulation [5] that the Hα effect
plays a critical role in the self-generation of the large-scale
magnetic field. Viewed together, these two different
physical applications reinforce the importance of the
constraint Eq. (3), derived rigorously from the MHD
equations, and the Hα effect that emerges from it.
We begin with a discussion of the constraint equation,

whichwas first discussed in [6] in the context of theRFP, and
later in a form more relevant for astrophysical applications
in [13] as well as [14]. Using the equations for the time
derivative of the vector potential A and magnetic field B,
given by Maxwell’s equations ∂A=∂t ¼ −E − ∇ϕ and
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∂B=∂t ¼ −∇ ×E, whereϕ is the electrostatic potential, we
obtain

1

2

∂ðA · BÞ
∂t þ 1

2
∇ · Γk ¼ −E ·B; (1)

where Γk ¼ð−A×EþA×∇ϕÞ¼−2A×E−A×∂A=∂t
is defined as the total magnetic helicity flux. All variables
are decomposed as f ¼ hfi þ ~f, where hfi ¼ f̄ is the mean
component (where h� � �i denotes the azimuthal and axial
average), and ~f is the fluctuating component. It can be shown
that [13,14]

1

2

∂h ~A · ~Bi
∂t þ 1

2
∇ · hΓki ¼ −h ~E · ~Bi: (2)

We now use the perturbed form of Ohm’s law for a resistive
MHD plasma, ~E ¼ −V̄ × ~B − ~V × B̄þ η~J, which implies
that ϵemf · B̄ ¼ h ~V × ~Bi · B̄ ¼ −ηh~J · ~Bi þ h ~E · ~Bi, which,
when combined with Eq. (2), yields the exact result

ϵemf · B̄ ¼ −ηh~J · ~Bi − 1

2

∂
∂t h ~A · ~Bi þHα; (3)

where

Hα ¼ − 1

2
∇ · hΓki ¼ ∇ ·

h
h ~A × ~Ei þ 1

2

D
~A ×

∂
∂t ~A

Ei
: (4)

Equations (3) and (4) serve as the point of departure for both
of our examples, discussed below. Specifically, for both
examples, the Hα effect will be calculated using Eq. (4). We
employ the nonlinear, resistive MHD code, DEBS, which
solves the single fluid MHD equations in doubly periodic
(r, ϕ, z) cylindrical geometry [5,15]. We use the same nor-
malization as in [5,15], where time, radius and velocity are
normalized to the outer radius a, the resistive diffusion time
τR ¼ a2=μ0η, and the Alfvén velocity VA ¼ B0=

ffiffiðp
μ0ρ0Þ,

respectively (B0 and ρ0 are the values on axis).
The dimensionless parameters, S ¼ τRVA=a and Pm, are
the Lundquist number and themagnetic Prandtl number (the
ratio of viscosity to resistivity), respectively. For magneti-
cally dominated simulations a force-free initial condition
is used [16]. For the flow dominated MRI simulations, the
initial state satisfies the equilibrium force balance condition
ðβ0=2Þ∇p ¼ ρV2

ϕ=r, where β0 ¼ 2μ0P0=B2
0 is the beta

normalized to the axis value, and the initial pressure and
density profiles are assumed to be radially uniform and
nonstratified. Pressure and density are evolved; however,
they remain fairly uniform during the computations. In these
computations, a mean Keplerian profile (Vϕ ∝ r−1=2) is
maintained in time by an external ad-hoc force in the
momentum equation. The boundary conditions in the radial
direction are as are appropriate for dissipative MHD with a
perfectly conducting boundary: the tangential electric field,
the normal component of the magnetic field, and the normal

component of the velocity vanish, and the tangential
component of the velocity is the rotational velocity of the
wall. The azimuthal (ϕ) and axial (z) directions are periodic.
The boundary conditions on the magnetic field (and the
vector potential) keep the volume-integrated magnetic
helicity gauge invariant [17].
In magnetically dominated laboratory configurations like

the RFP [18] and spheromaks [19,20], the importance of
magnetic helicity is well recognized due to the efficiency of
the Taylor relaxation process [21]. In these configurations,
it has been experimentally demonstrated that a turbulent
plasma relaxes to a state of minimum energy subject to the
conservation of total magnetic helicity [18,20]. There is
strong evidence from experiments as well as simulations
[16] that tearing instabilities resonant with rational surfaces
within the plasma play an important role in the relaxation
process. The tearing fluctuations contribute to the emf εemf ,
which converts poloidal flux to toroidal flux.
To calculate εemf due to tearing instabilities, we con-

sider a general cylindrical equilibrium magnetic field
B̄ ¼ BzðrÞẑþ BϕðrÞϕ̂, which is subject to perturbations
of the form ~fðr;ϕ; z; tÞ ¼ ~fðrÞ expðγtþ imϕ − inz=RÞ in
cylinder of radius a and periodicity length 2πR along z.
In this geometry, reconnection driven by tearing instabilities
tend to occur at mode-rational surfaces located at r ¼ rs,
where q ¼ rBzðrÞ=RBϕðrÞ ¼ m=n andm and n are positive
integers.At these resonant surfaces, theparallelwavenumber
vector vanishes, that is k · B̄ ¼ mBϕ=r − nBz=R ¼ 0.
For reconnecting instabilities, we adopt the standard

tearing ordering [22] γ ∝ η3=5, γ → ϵ3, η → ϵ5,
ðr − rsÞ → ϵ2x, where ϵ is a small parameter. Using this
ordering, it can be shown that to leading order Eq. (3) reduces
to −∇ · hð ~A · B̄Þ ~Vi, which can be written in terms of the
perturbed radial displacement (Ξ) and the lowest-order
perturbed radial magnetic field (Ψ0) [6,23]. One obtains

ϵemf · B̄ ¼ ∇ ·

�
κ2∇ J̄ · B̄

B̄2

�
; (5)

where κ2 is a positive-definite function. Equation (5), well
established in the literature [6–9,23], is the magnetic helicity
conserving form of the α effect, which through hyper-
resistivity relates the turbulent emf to the gradient of mean
parallel current density (the free energy for tearing insta-
bility). Here, we include the full radial structure of Ξ and
further extend the derivation of κ2 to obtain the radial extent
and the structure of hyper-resistivity around the reconnection
surface in terms of Hermite polynomials to obtain

κ2 ¼ B2

krs
ηQΨ2

0ζðrÞ; (6)

ζðrÞ¼expf−½Q−1=2ðr−rsÞ�2=2gΣma2mH2m½Q−1=4ðr−rsÞ�;

a2m¼ 21=2

4mm!

� 1
Q3=2 ð4mþ1Þ

ð4mþ1Þð4mþ1ÞþSq

�
; (7)
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where Q and Sq are the normalized growth rate and
shear factor, defined as Q¼ γ=ðl4QRÞ and Sq¼ð2a=Rq0Þ2,
where prime indicates the radial derivative [QR ¼
ðm2ηF02B2=ρr2sÞ1=3, l ¼ ðLR=rsÞ1=5, LR ¼ ðη=QRÞ1=2,
F0 ¼ −ðq0Bθ=qBÞ]. We note that only the even parity
solution for the perturbed radial displacement contributes
to Hα under the constant-psi approximation, represented by
the constant Ψ0. (We adopt here the notation of [24].)
For a reconnecting tearing mode (m ¼ 1, k ¼ 1.8)

resonant at r ¼ 0.303, with a mean parallel current,
J̄ · B̄=B̄2 ¼ 3.2ð1 − r3Þ, the hyper-resistivity κ2 in the inner
reconnection layer can directly be obtained analytically
from Eqs. (6) and (7), which shows a radial extent of about
0.05 (here we have normalized r to the minor radius a). In
Fig. 1, we compare the analytical result with the numerical
result obtained from a single tearing mode computation.
Both results demonstrate the positivity of κ2, required by
conservation laws [6,7]. The dashed line represents the
numerical result from the leading term in Eq. (3), and
the solid line the analytical result. We should note that the
computations are in the viscous-resistive regime with
S ¼ 106 and Pm ¼ 1, which results in a larger radial extent
of κ2 than the analytical result. We have also computed κ2

from multiple nonlinear tearing modes, which shows a
broadening from multiple modes. Thus, our DNS confirm
for the first time the explicit functional form of Eq. (5). The
predictions of Eq. (5) for the RFP are well-known—-the
mean-field saturated states in these magnetically dominated
self-organized plasmas are Taylor-like [6–8], consistent
with experimental observations [18,20]. Taylor relaxation
theory has also been adapted to explain the heating of the
solar corona [25]. The possible role of hyper-resistivity in
this process has also been examined [26].
We now consider the Hα effect in the context of the

accretion disk, which is flow driven and dominated by the
MRI. In contrast to the magnetically dominated RFP, where
the primary source of free energy is the parallel current

density, the primary source of free energy in the accretion
disk is the flow shear. Motivated in part by the consid-
erations of [13], Vishniac and Cho [10] proposed a form of
helicity-flux-driven flux of the form ð−∇ · JH=2ÞVC, where
JH ¼ hð ~E − ∇ ~ϕÞ × ~Ai ¼ −2hð ~E × ∇ ~ϕÞiτc, where τc is
the eddy correlation time. We demonstrate below by
DNS that ð−∇ · JH=2ÞVC underestimates significantly the
role of the Hα effect. As is often standard practice in
zero-net-flux MRI simulations, we begin with an initial
magnetic field of the form Bz¼ sin½2πðr−r1Þ=ðr2−r1Þ�=r
and Bϕ ¼ 0, driven by an azimuthal mean Keplerian flow
(Vϕ ¼ V0r−1=2), where r1, r2, and V0 are the inner and
outer radii and the magnitude of mean flow on axis,
respectively. Figure 2 shows the result of a single non-
axisymmetric m ¼ 1 mode computation of the MRI in
which the various terms in Eq. (3) are calculated numeri-
cally for magnetic Reynolds number Rm ¼ SV0=VA ¼
1600 (with Pm ¼ 1), in a nonlinearly saturated state. It
is seen that the term on the left-hand side, given by εemf · B̄
is balanced almost entirely by Hα, and the contribution
of the other two terms are small. For comparison, we also
compute the Vishniac-Cho flux, which is much smaller
than Hα. This is because the perturbed electric field
computed in [10] is approximated by the relation
~E ¼ − ~V × B̄, which is incomplete. Note that our compu-
tation of the Hα effect begins with the exact Eq. (4), which
differs from the approximate equations used in other
studies [12,27,28] which have also identified additional
contributions to the Vishniac-Cho flux.
We have also carried out DNS with multiple modes,

leading to MRI turbulence. Fully nonlinear computations
start with a Keplerian flow profile and zero net flux
with Pm ¼ 2, Rm ¼ 3400, β0 ¼ 105, and radial, azimuthal,
and axial resolutions nr ¼ 220, 0 < m < 43, and
−43 < n < 43, respectively. The radial magnetic energy
for MRI modes is shown in Fig. 3. As shown, the axisym-
metricm ¼ 0 modes as well as the nonaxisymmetric modes

FIG. 1. The radial structure of hyper-resistivity κ2 for a single
tearing mode with S ¼ 106. The solid line denotes the analytical
result, while the dashed line shows the numerical result in the
vicinity of the reconnecting surface where linear theory is
applicable. The reconnecting surface is shown at r ¼ rs with
the vertical line.

FIG. 2 (color online). Dynamo term εemf · B̄, total divergence
form of fluctuation-induced helicity flux given in Eq. (4)
−∇ · hΓki=2, and the divergence form of helicity flux given by
Vishniac and Cho, duringm ¼ 1MRI mode nonlinear saturation.
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(m ¼ 1, 2, 3 are shown) grow robustly in the linear regime
and saturate nonlinearly. The nonlinear saturated state
exhibits significant time dependence, including the second
term on the right-hand side of Eq. (3). In Fig. 4, we show the
time-averaged Hα profile over three instants of time,
and the averaged (along the ϕ and z directions) Bϕ profile.
Since the initial state had no Bϕ, it is clear that the Hα effect
plays a dominant role in producing a large-scale azimuthal

field which, in turn, contributes to the nonlinear saturation of
the MRI [5]. (The Vishniac-Cho flux continues to be much
smaller than Hα under these circumstances.)
In conclusion, we have demonstrated by DNS in global

geometry that the Hα effect, which is a rigorous conse-
quence of magnetic helicity conservation in a turbulent
plasma, plays a dominant role in magnetically, as well as
flow-driven self-organization. While the case of the mag-
netically dominated RFP, which has been the subject of
numerous direct experimental observations, is relatively
well understood, there remain many open questions in the
case of the flow-driven MRI dynamo. Viewing both of
these problems from a common perspective enables us to
emphasize the importance of tracking the flow of magnetic
helicity in quantitative measurements of the dynamo effect,
which we have performed in this Letter using DNS
beginning with the exact Eqs. (3) and (4). It is also clear
that the averaging process as well as the boundary con-
ditions used can play a subtle role in such quantitative
measurements. Such considerations might play an impor-
tant role in resolving important differences in results
between shearing box [29–31] and global MRI simulations.
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