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We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an
embedded flux-biased direct current SQUID to generate strong resonant and nonresonant tunable
interactions between a phase qubit and a lumped-element resonator. The rf SQUID creates a tunable
magnetic susceptibility between the qubit and resonator providing resonant coupling strengths from zero to
near the ultrastrong coupling regime. By modulating the magnetic susceptibility, nonresonant parametric
coupling achieves rates > 100 MHz. Nonlinearity of the magnetic susceptibility also leads to parametric
coupling at the subharmonics of the qubit-resonator detuning.
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The need to develop robust schemes for controlling
qubit-qubit and qubit-cavity bus interactions is generic to
all physical approaches for implementing a large scale
quantum information processor or quantum simulators
[1,2]. With superconducting circuits [3], the most widely
used method of controllable coupling is with tunable qubits
or cavities and with passive, static, “always-on” capacitive
coupling [3–6]. Interaction strengths are then controlled
through the adjustable size of frequency detunings between
the different resonant elements [6–10]. Although very
simple and convenient for a small number of elements,
the ability to provide sufficient detuning between all
coupled elements becomes impractical when scaling to
large numbers of qubits or cavities [11]. Additionally, it is
difficult to selectively tune individual elements fast enough
to avoid unwanted interactions from inevitably crossing
resonant frequencies of spectator elements. Finally, simul-
taneously engineering an optimal performance and strong
resonance conditions can be challenging [12–14].
One major advantage with superconducting circuit

approaches is their ability to use Josephson junctions as
flux-tunable inductors, not only for tunable qubits and
cavities, but also for individual, tunable coupling elements
[11–22]. Experimental demonstrations began in the
classical regime [18,20,22], while quantum implementa-
tions [21,23–27] have still relied on resonant interactions,
without addressing the problem of optimal operating
points. Other theoretical proposals [28–33] and experi-
ments [34–38] have introduced parametric interactions
between nonresonant elements to solve this problem.
Here the nonlinearity is provided by the qubits and includes
some amount of always-on coupling. Further theoretical
proposals have provided a unique solution to all the major
problems discussed above, by providing parametric inter-
actions through individual tunable coupling elements
[12,39–42]. Early successful experiments were performed,

but suffered from difficulties associated with fully integrat-
ing the coupler into both the qubits and their readout
[13,14]. Here, we discuss the use of an individual, stand-
alone rf superconducting quantum interference device
(SQUID)-type coupling element [15,18,20,22,24] that
introduces negligible energy loss (see Supplemental
Material, part V [43]) and requires minimal or no modi-
fication to the qubit or cavity architecture. We have made
three major advances in this Letter: (1) resonant coupling
can be performed with rates ranging from zero to near
ultrastrong values close to 10% of the resonant frequency,
(2) nonresonant parametric coupling can be performed with
rates > 100 MHz with an architecture that allows for the
cancellation of static coupling, and (3) we have demon-
strated a new multiphoton parametric coupling mechanism.
All of the behavior observed agrees with theoretical
predictions.
Shown in Fig. 1, our circuit design consists of a phase

qubit with geometric inductance Lq, critical current Iq0, and
shunt capacitance Cq, which is inductively coupled to a rf
SQUID loop through a mutual inductance Mqc. The rf
SQUID loop acts as a tunable coupler with geometric
inductance Lc, and two junctions, with critical currents,
Ic01 and Ic02, that form a dc SQUID that can modify the rf
SQUID’s properties. The geometric inductance of the dc
SQUID is small enough to neglect in the following
theoretical analysis. The rf SQUID is inductively coupled
to a lumped-element resonator through a mutual inductance
Mcr. The resonator has a geometric inductance Lr, capaci-
tance Cr, and resonant frequency ωr. The phase qubit [44]
is controlled by a single flux-bias line that provides both dc
and rf flux, φq ¼ Φq=Φ0 (Φ0 is the magnetic flux quan-
tum). Qubit measurement is performed using a short
(≈5 ns) pulse that induces tunneling of the jei state with
probability Pe, without appreciable tunneling of the jgi
state [7]. The coupler is controlled by two external flux-bias
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lines. One line applies flux φc ¼ Φc=Φ0 to the rf SQUID
loop, while the other line applies flux, φβ ¼ Φβ=Φ0, to the
embedded dc SQUID. The chip is mounted in a shielded
box onto the mixing chamber of a cryogen-free dilution
refrigerator with a base temperature T ¼ 11 mK.
The critical current Ic0 of the embedded dc SQUID can

be tuned by varying φβ [45]. The functional form is

Ic0ðφβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2þcos2

φβ

2
þ I2−sin2

φβ

2

r
; (1)

where I� ¼ I01 � I02 is the sum and difference of the
individual critical currents of the junctions comprising the
dc SQUID. The circulating dc screening current in the rf
SQUID is given by

ic ¼ − sin ½2πφxc þ βðφβÞic�; (2)

where ic ¼ Ic=Ic0ðφβÞ is the normalized circulating cou-
pler current, φxc ¼ ðφc þMqcIq=Φ0Þ is the net external
flux applied to the coupler, Iq is the circulating current in
the qubit inductor, and βðφβÞ ¼ 2πLcIc0ðφβÞ=Φ0. Here
βðφβÞ < 1 so that the coupler circulating current is single
valued [24,25]. The coupler circulating current generates an
effective mutual inductance between the qubit and reso-
nator that is a function of both φxc and φβ, given by

Meffðφxc;φβÞ ¼ M0χðφxc;φβÞ; (3)

where M0 ¼ MqcMcr=Lc and χðφxc;φβÞ is a linear, first-
order magnetic susceptibility between the qubit and reso-
nator, given by

χðφxc;φβÞ ¼
LcIc0
Φ0

∂ic
∂φxc

: (4)

The effective mutual inductance implies a coupling
between the qubit and resonator given by

gðφxc;φβÞ ¼ g0χðφxc;φβÞ þ gres; (5)

where g0 ¼ ðωq0=2ÞM0=
ffiffiffiffiffiffiffiffiffiffi
LqLr

p
[42], ωq0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
LqCq

p
,

and gres is any residual direct coupling between the qubit
and the resonator from either capacitive, inductive, or
higher-order virtual-photon processes that access the cou-
pler’s own high frequency resonant modes [25,41]. When
φxc ¼ n=2, for integer n, the linear susceptibility takes on
the following φβ-dependent extrema:

χmaxðφβÞ ¼
βðφβÞ

1 − βðφβÞ
for nodd; (6)

χminðφβÞ ¼ −
βðφβÞ

1þ βðφβÞ
for neven: (7)

We note some interesting features; χmaxðφβÞ increases
without bound as βðφβÞ is tuned towards unity and
χðφxc;φβÞ can be both positive and negative (an additional
“twist” in the coupler loop can also reverse its sign [26]).
This second feature provides a built-in mechanism to
engineer the cancellation of any residual direct coupling
gres regardless of its sign [25,26]. This is not only important
to ensure the resonant coupling strength can be tuned to
g ¼ 0, resulting in a large “on/off ratio,” but also for
engineering optimal performance for nonresonant inter-
actions, as discussed below.
Near resonance, the interactions between the qubit

and resonator are governed by the well-known Jaynes-
Cummings model [7]. In the rotating frame of the uncoupled
qubit and resonator, the interaction Hamiltonian is

HI ¼ ℏgðφxc;φβÞ½eiΔtσ−a† þ e−iΔtσþa�; (8)

where Δ ¼ ωge − ωr is the detuning of the qubit and
resonator, ωge ¼ ðEe − EgÞ=ℏ, and ωr is the resonator
frequency. When the detuning becomes large relative to g,
the time-dependent exponentials rotate rapidly, resulting in
negligible interactions. For nonresonant interactions, if g is
harmonically modulated in time at Δ to counter the
exponentials, the interaction terms once again become
stationary. This is the essence of parametric coupling.
Physically, “pump photons” at frequency Δ, introduced into
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FIG. 1 (color online). (a) Circuit diagram for the phase qubit,
coupler, and resonator. The qubit’s design parameters are
Lq ≈ 2 nH, Iq0 ≈ 0.5 μA, Cq ≈ 0.5 pF, and Mqc ≈ 70 pH. The
coupler’s design parameters are Lc ≈ 300 pH, Ic01 ¼ Ic02≈
0.5 μA. The resonator’s design parameters are Lr ≈ 1.8 nH,
Cr ≈ 0.26 pF, and Mcr ≈ 85 pH. All mutual inductances to flux-
bias lines were designed to be ≈2 pH.(b) Colorized optical micro-
graph of the device. All flux biases φi ¼ Φi=Φo are normalized by
the magnetic flux quantum, Φo ¼ h=2e.
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the system via the coupler, make up the energy difference
between the qubit and resonator, allowing them to exchange
energy. Next, we show that the nonlinearity of the coupling
curve g0χðφxc;φβÞ can also lead to a new parametric
coupling condition at the subharmonics of Δ.
The coupling strength g is modified by modulating φxc

through the coupler bias,

φcðtÞ ¼ φdc þ δφc cosωpt; (9)

where φdc is a dc flux offset that sets the resonant coupling
strength and δφc is the amplitude of the rf modulation. For
δφc ≪ 1, gðtÞ can be found by Taylor expanding Eq. (5) in
φxc to get

gðtÞ ¼ g0
X∞

n¼0

χðnÞφdcδφ
n
xc
ðeiωpt þ e−iωptÞn

n!2n
; (10)

where χðnÞφdc is the nth derivative of χðφxc;φβÞwith respect to
φxc, evaluated at φxc ¼ φdc. Note that χ

ðnÞ
φdc is a function of

φβ. Equation (10) implies that multiphoton parametric
interactions are predicted at pump frequencies such that
nωp ¼ Δ. The lowest-order n-photon interaction is (dis-
carding counterrotating terms)

HðnÞ
I ¼ ℏ

g0χ
ðnÞ
φdcδφ

n
xc

n!2n
½σ−a† þ σþa�: (11)

The higher-order terms lead to saturation of the coupl.ing
strength when the pump amplitude becomes large. From
Eq. (11), we see that the overall coupling strength in the n-
photon parametric case is governed by both δφxc and the

derivative χðnÞφdc . Figure 2(a) shows a plot of χðφxc;φβÞ for
various βðφβÞ. As mentioned, χmaxðφβÞ increases with

increasing βðφβÞ, but χðnÞφdc also considerably increases with
βðφβÞ at operating points near φxc ¼ �0.5. Notice that
through careful design, it should be possible to engineer gres
in such a way to offset the static coupling curve gðφxc;φβÞ,
so that zero static coupling occurs near φxc ¼ �0.5, where

χðnÞφdc ≫ 1. Operating here ensures g ¼ 0 when the pump is
off, allowing an extremely large on/off ratio for nonreso-
nant interactions, even for small Δ’s (see Supplemental
Material, part IV [43]). In the experimental results
described below, we did not perform this further optimi-
zation, but chose to investigate the largest possible coupling
strengths with our existing circuit.
First, we measure the coupler’s circulating current Ic as a

function of φxc (as described in Ref. [25] and Supplemental
Material, part II [43]) for various βðφβÞ. Next, we exper-
imentally map out χðφxc;φβÞ by measuring resonant
coupling rates 2g as a function of φxc and φβ. This is
achieved through spectroscopically observing the splitting
of the coupled qubit and resonator modes [25]. The

resonator’s frequency is ωr=2π ≈ 7.2 GHz and modulates
slightly with φxc as discussed in [25]. Several spectros-
copies are taken as a function of φxc to map out coupling
rates for the fixed rf SQUID critical current. The critical
current is then modified by changing φβ and the whole
process is repeated. Figure 2(b) is a plot of measured
resonant coupling rates as a function of φxc for different rf
SQUID critical currents. The maximum coupling rate
shown is 2g=2π ¼ 482 MHz, approaching the ultrastrong
coupling regime, with 2g=ωr ≈ 7% [46–48]. Mode split-
tings with 2g=2π > 500 MHz were also observed with this
device, but due to the resonator’s close proximity to the
qubit’s minimum operating frequency, the data were
difficult to fit reliably. A device designed with a higher
resonator frequency would allow more quantitative mea-
surements in the ultrastrong coupling regime. Without
performing an exhaustive search, the minimum resonant
coupling rate measured with this device was
2gmin=2π ¼ 6 MHz, still visible within the qubit linewidth
of about 7 MHz, providing a lower bound for the on/off
ratio of approximately 80. We determined 2gres=2π ≈
10 MHz and 2g0χmin=2π ≈ −25 MHz, ensuring that the
coupling strength passes through zero, as seen in similar
devices [25] (see Supplemental Material, part III [43]).
Once the resonant coupling curves are measured, non-

resonant parametric interactions can be probed by setting
the coupler to an operating point where the modulation in g
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FIG. 2 (color online). (a) Theoretical plot of the magnetic
susceptibility χ as a function of φxc for βðφβÞ ¼ 0.74, 0.81, 0.86,
0.89, corresponding to the measurements of resonant coupling
rates plotted in (b). Derivatives of χ increase sharply near φxc ¼
�0.5 as βðφβÞ approaches unity, allowing stronger parametric
coupling with increasing βðφβÞ. (b) Resonant coupling rates
along with theoretical fits.
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with φxc is appreciable [see Fig. 2(b)]. The qubit is detuned
from the resonator by an amount Δ and a pump tone of
amplitude δφc and frequencyωp is applied to φc in addition
to the dc offset. The frequency of the pump tone is swept.
Qubit spectroscopy is then measured as a function of ωp
and δφxc ¼ δφc. For a given δφxc, mode splitting is
observed when ωp ¼ Δ, indicating parametric interactions
between the qubit and the resonator. Figure 3 shows a
typical case. The qubit and resonator are detuned by
Δ=2π ¼ 429 MHz. The coupler is biased with dc flux
offsets, φxc ¼ −0.527 and βðφβÞ ¼ 0.81, corresponding to
the red curve in Fig. 2(b). The applied pump power to the
coupler coil is −58 dBm. Notice that we also find mode
splitting at subharmonics, ωp ¼ Δ=2. This is the result of
the n-photon process described above, where n ¼ 2 pho-
tons at half the detuning frequency are upconverted to a
single resonant pump photon. Depending on the operating
conditions, n ¼ 3 and n ¼ 4 photon events were also
observed with this sample, but were too small to present
quantitatively (see Supplemental Material, part VI [43] for
an example). Included in Fig. 3 are theory fits of the
coupled-mode frequencies along with asymptotes that obey
the linear relation ω ¼ ωr − nωp, where ωr is the resonator
frequency, ωp is the pump frequency, and n is number of
photons absorbed.
In Fig. 4, we plot the resulting mode splittings from the

n ¼ 1 and n ¼ 2 photon processes for βðφβÞ ¼ 0.81 (red
curves) and βðφβÞ ¼ 0.86 (blue curves). For each βðφβÞ,
we increase the pump power to investigate the power
dependence of the splittings. For the theoretical predictions,
we use only the lowest-order terms from the expansion of
Eq. (10), the slopes χð1Þφdc and χð2Þφdc from numerically fitting
the data shown in Fig. 2(b), and a single fit parameter for
each curve δφxc reported along with the corresponding
drive powers in Fig. 4. To test the validity of these fits, we
used a network analyzer to independently measure the
available power at the input of the sample box in order to
infer the expected rf flux applied to the rf SQUID loop. For
example, when βðφβÞ ¼ 0.86 and ωp=2π ¼ 429 MHz, a

generator input power of −62 dBm provided a rf current
δIb ≈ 10 μA to the bias coil. From the Φ0 periodicity of the
rf SQUID circulating current, we measured the mutual
inductance between the bias coil and rf SQUID loop to be
Mcb ¼ 1.72 pH. Thus, the expected flux applied to the rf
SQUID loop is δφxcΦ0 ¼ McbδIb ≈ 8.3 mΦ0, which
agrees well with the corresponding fit value shown in
Fig. 4(a). At lower powers, the lowest-order theory fits the
data nicely. At higher powers, the coupling rate saturates,
causing the data to significantly deviate from the lowest-
order expansion term, as expected. The largest n ¼ 1
parametric coupling rate observed was 2g=2π ¼
135 MHz [shown in Fig. 4(a)]. For the parametric case,
the on/off ratio can be limited by photon leakage through
the pump’s pulse gate, where 40 dB isolation leads to an on/
off ratio of 100. In our case, we were mostly limited by a
small Δ combined with a large static g at the chosen
operating points, giving a maximum on/off ratio of 51. This
can easily be increased by over an order of magnitude by
increasing Δ, dynamically shifting the static coupling
strength to g ¼ 0, or through design improvements (see
Supplemental Material, part IV [43]).
In summary, the rf SQUID coupler provides dynamic

control over both resonant and nonresonant interactions.
Both modes of operation rely on the dependence of the
magnetic susceptibility between the qubit and resonator as
a function of φxc and φβ. By tuning the critical current of
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the embedded dc SQUID, we control the maximum of the
magnetic susceptibility, leading to resonant coupling rates
approaching the ultrastrong coupling regime. The depend-
ence of the magnetic susceptibility curve on φxc can be
exploited to induce strong, nonresonant coupling by para-
metric modulation at the qubit-resonator difference fre-
quency or subharmonics. Parametric coupling rates
exceeding 100 MHz are possible. Future work will reduce
dielectric losses, increase lifetimes, and explore parametric
interactions at the sum frequency (or blue-sideband, famil-
iar in trapped-ion systems), ωp ¼ ωge þ ωr. This coupler is
well suited for nonextended, nearest neighbor tunable
coupling, generically important for constructing coupled-
mode systems ubiquitous in physics, useful for both
quantum information architectures and quantum
simulators.
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