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A long-standing open question about Gaussian continuous-variable cluster states is whether they enable
fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster
above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are
below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with
one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum
computation of theoretically indefinite length is possible with finitely squeezed cluster states.
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Gaussian cluster states.—Quantum computing (QC)
harnesses inherently nonclassical features of quantum
physics to perform computations that would be impractical
for any ordinary (classical) computer [1]. This requires
making quantum systems interact in a carefully controlled
and coherent manner, which is often very difficult. On the
other hand, measuring quantum systems is usually much
easier. Measurement-based QC makes use of this fact,
replacing the difficulty of coherently controlling inter-
actions between quantum systems with the up-front chal-
lenge of creating an entangled resource known as a cluster
state [2], whereafter local adaptive measurements alone
enable the full power of QC [3].
Normally in a quantum computer, quantum information is

stored in qubits [1], but continuous-variable (CV) approaches
also exist [4] in which wave functions over a continuous
quantum variable are the basic information carriers. When it
comes to measurement-based QC, optical CV cluster states
[5,6] offer a distinct advantage over their optical-qubit
counterparts [7,8] because they are much easier to make
experimentally [9–11]. In fact, highly scalable experimental
designs exist for creating very large CV cluster states
[12–16], and an experimentally demonstrated 10 000-mode
CV cluster state [9] now holds theworld record for the largest
entangled state ever created in which each constituent
quantum system (in this case, a temporal packet of light)
is individually addressable. This shatters the previous record
of 14 trapped ions [17] by 3 orders of magnitude. Even more
recently, a frequency-encoded CV cluster state has claimed
second place with 60 entangled frequency modes and the
promise of thousands more available [11].
This ease of experimental generation and scalability

comes at the price of inescapable noise when these states
are used for quantum information processing [18,19]. Ideal
CV cluster states are unphysical [20], so when discussing
their physical realization, one always speaks of Gaussian
states [21] for which certain linear combinations of quad-
rature variables have reduced variance (i.e., squeezing)

[18,20]. As these variances tend to zero, or, equivalently,
the squeezing tends to infinity, these states become better
and better approximations to ideal CV cluster states [20],
but the required energy diverges. Keeping the energy finite
requires that the squeezing remain finite, which means that
even with perfect experimental equipment, information
degradation is inevitable when using CV cluster states
for measurement-based QC.
When used in the real world, both qubit and CV cluster

states will suffer from noise, but one might wonder whether
the intrinsic noise of CV cluster states due to finite
squeezing might be fundamentally different in some
way. Previous results showed that there is no easy fix
for this type of noise [22,23] and left hanging in the air the
question of whether finitely squeezed (and thus physical)
CV cluster states were at all useful for practical measure-
ment-based QC of indefinite length. If not, it would mean
there was a fundamental deficiency in CV cluster states not
suffered by their qubit-based cousins. The possibility
remained, however, that the noise might be handled using
well-established methods of error correction and fault
tolerance [24–31] applied to qubits encoded as CV wave
functions (e.g., [32]), a possibility that the authors them-
selves point out [22].
Fault-tolerant QC (see Ref. [33] for a review) is the

ability to reduce logical errors in a quantum computation to
arbitrarily low levels if the physical error rate of the
individual gates comprising the computation is below a
fixed, positive value called the fault-tolerance threshold. In
other words, if the probability of error in every physical
gate can be guaranteed to be below the threshold, then these
noisy gates can be used to implement quantum error
correction of noisy quantum information in a way that
can make the computation’s overall error rate as low as one
desires, no matter how long the computation.
Qubit cluster states admit a fault-tolerance threshold for

measurement-based QC [34,35], which can be made
strikingly high (1.4%) using topological methods [36]
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and which can be further refined to a few percent by
postselection [37–39]. Fault-tolerance thresholds for more
traditional codes (i.e., concatenated codes) vary, with
typical thresholds being 10−6 [25–28], 10−4 [31], and 3 ×
10−3 [40]—and up to a few percent with postselection [29].
Since one can, in principle, implement any unitary on

CV-encoded quantum information using a CV cluster state
(albeit noisily), our strategy will be to encode qubits as CV
wave functions [32] in a way that maps the natural noise of
a CV cluster state into noise on the gates processing the
encoded qubits. Higher squeezing will produce a lower gate
error rate. If the squeezing is high enough, this error rate
will be below the threshold for some known error-
correcting code as discussed above, and we can use
the CV cluster state to implement fault-tolerant QC on
the encoded qubits. Our goal, then, will be to prove the
existence of a squeezing threshold: a constant, finite level
of squeezing above which fault-tolerant measurement-
based QC is possible using encoded qubits and a concat-
enated error-correcting code, assuming no other noise
beyond that introduced by finite squeezing alone [18,19].
GKP-encoded qubits and Gaussian channels.—The

qubit encoding of Gottesman, Kitaev, and Preskill (GKP)
[32] in its simplest form encodes one qubit per oscillator. The
position-space wave function for each of the logical compu-
tational basis states is an evenly spaced comb of δ functions
separated by 2

ffiffiffi
π

p
, and the two states’ combs are offset by

ffiffiffi
π

p
from each other—specifically, jjLi ∝

P
s∈Zjð2sþ jÞ ffiffiffi

π
p iq

(j ¼ 0, 1), where jsiq is an eigenstate of position for the
oscillator. A physical realization of this encoding replaces the
δ functions with sharp Gaussians and limits their heights
according to a large Gaussian envelope. Although challeng-
ing to create, proposals exist to generate such states optically
[41] or by a variety of other methods [32,42–45].
This encoding protects quantum information against

random shifts in the quadrature variables q̂ (position)
and p̂ (momentum) [32]. When Gaussian distributed, a
random shift is called a Gaussian channel and can be
modeled as Gaussian convolution of the input Wigner
function. This is exactly the noise model of CV cluster-state
QC [18,19], making GKP an appealing qubit encoding—as
long as error correction can be performed with minimal
deviation from the measurement-based paradigm (cf.
Ref. [35]). Fortunately, GKP error correction [32] dovetails
nicely with CV cluster states, with details found in Sec. I.A
of the Supplemental Material [54].
Fault-tolerant Clifford gates.—The workhorse of (qubit-

based) fault-tolerant quantum computation is the Clifford
group [1,31], which can be generated by supplementing the
Pauli group with the single-qubit gates of Hadamard and
phase, as well as with a two-qubit gate such as the controlled-
Z gate (sometimes called CPHASE). We need to be able to
perform all of these gates with a below-threshold error rate.
The GKP-encoded Pauli group is just the CV Weyl-

Heisenberg group restricted to shifts by integer multiples of

ffiffiffi
π

p
in position and/or momentum [32]. In CVmeasurement-

based quantum computation, such displacements are ubiqui-
tous and are therefore considered free to implement,
and everything else is done with measurements [18].
GKP-encoded Hadamard and phase gates correspond to
the Fourier transform F̂ ¼ eiðπ=4Þðq̂2þp̂2Þ and shear
P̂ ¼ eði=2Þq̂2 , respectively, and the qubit controlled-Z gate
is just a CV ĈZ gate with weight �1 (ĈZ½�1� ¼ e�iq̂⊗q̂)
[32]. All of these CV operations are Gaussian unitaries,
which are easy to implement on a CV cluster state [18]. This
is a huge advantage because it means the entirety of theGKP-
encoded Clifford group inherits this ease of implementation.
Any single-mode Gaussian unitary can be implemented

using four quadrature measurements, fp̂þmjq̂g4j¼1, on a
linear CV cluster state (also known as a CV quantum wire)
[46]. We define the measurement vector m ¼ ðm1;…; m4Þ
to be the vector containing the four shearing parameters
[19] associated with the quadrature measurements.
mðIÞ ¼ ð0; 0; 0; 0Þ, mðFÞ ¼ ð1; 1; 1; 0Þ, and mðPÞ ¼
ð1; 0; 0; 0Þ implement the identity Î, Fourier transform F̂,
and shear P̂, respectively. The following piece of an
ancilla-supplemented CV cluster state allows these
Gaussian unitaries to be implemented on the input state
jϕi, followed by GKP error correction (blank nodes are p̂-
squeezed vacuum states; nodes with 0L are GKP-encoded
ancillas j0Li; links are ĈZ gates with weight þ1 [18]):

To implement gate Ĝ, we must perform quadrature mea-
surements associated withmðGÞ on nodes 1–4 on the bottom
row.Measuring the ancillas (and appropriately displacing the
nodes below) performs the GKP error correction on both q̂
and p̂, as shown in Sec. I.A of the Supplemental Material
[54]. To apply gates sequentially, one identifies the output
node with node 1 of the next cluster.
Implementing a CV ĈZ gate requires links in the second

lattice dimension [18]. Here is an ancilla-supplemented
cluster that implements a GKP error-corrected ĈZ gate:

(2)
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Measuring every mode in p̂ except the two output modes
implements a ĈZ gate on the input state jϕi ⊗ jψi,
followed by two GKP error-corrected identity gates (see
Supplemental Material [54] for details). Single-mode gates
[using Cluster (1)] and ĈZ gates [using Cluster (2)] can be
combined into an arbitrary Clifford circuit by identifying
each output node with the input of the next gate and
including additional identity gates where required. While
this is undoubtedly not the most efficient implementation, it
is the simplest for a proof-of-principle demonstration of
fault tolerance, which is the goal of this work.
Concatenated codes.—GKP error correction projects the

Gaussian noise into a particular shift error using (slightly
noisy) ancillas. This shift error is then corrected by shifting
back to the code space in the direction that corresponds to
the shift being smallest. If the shift is too big, a qubit-level
logical error results. The error rate is determined by the
initial noise in the data register and in the ancilla [47]. After
error correction in both quadratures, however, the original
data-register noise has been completely replaced by inde-
pendent, uncorrelated noise from the ancillas, thereby
converting the Gaussian noise (from propagation through
the cluster) into local, independent Pauli errors after each
gate. Thus, noise correlations cannot build up between
distant data registers.
By abstractly treating the GKP error-corrected gates as

faulty qubit gates, we can concatenate the GKP error
correction with a qubit-level error-correcting code [33]
and completely forget about the fact that, at the physical
level, we are using CV information processing. Then, if the
error rate is low enough (discussed next), we can imple-
ment Clifford gates fault tolerantly by further concatena-
tion. At that point, the only other ingredient required is the
ability to distill a “magic state” for use in implementing a
non-Clifford gate (discussed subsequently).
Squeezing threshold.—To determine the amount of

squeezing required for fault-tolerant QC, we use a physi-
cally motivated model of encoded states in which the
Wigner function for an ideal GKP-encoded state, which is a
regular lattice of � δ functions [32], is replaced by a
corresponding lattice of sharp� Gaussian spikes, each of
which has the same 2 × 2 covariance matrix η, which we
call the error matrix. For these states to have finite energy,
we require that the height of a given Gaussian spike is itself
distributed according to a (very large) Gaussian envelope
in both quadratures. This is consistent with the original
proposal by GKP but extended to the possibility of larger
envelopes, which correspond to mixed states. Because η is
the same for each spike, the height of each spike is
irrelevant in measurements of q̂mod

ffiffiffi
π

p
, which are used

for error correction, and we can focus on η alone.
Specializing the method of Ref. [47] to Gaussian-

distributed shifts, we establish a minimum squeezing
threshold as follows. Consider that the GKP encoding
can perfectly correct a shift error when the magnitude of the

shift error, plus the magnitude of the error in the ancilla
used to measure the shift, is less than

ffiffiffi
π

p
=2 [32,47]. When

this bound is exceeded, a qubit-level logical Pauli error
occurs because the state is “shifted back” in the wrong
direction. Also note that there are two corrections (q̂ and p̂)
per mode, per gate. For the gate to be free of error, all of
these corrections must succeed.
The calculation proceeds, then, by identifying which

gate has the largest probability of logical error as the error
matrix evolves through Cluster (1) using measurement
vectors mðIÞ, mðFÞ, andmðPÞ and through Cluster (2) using
just p̂ measurements. Section I of the Supplemental
Material [54] contains the details of the calculation; here
we simply present the results.
The noisiest gate is the ĈZ gate, so it sets the noise

threshold. There are four corrections in this case. Assuming
that the initial variance σ2 in the Gaussian spikes of the
encoded ancillas is the same as that of the initial
momentum-squeezed vacuum states used to make the
CV cluster state, two of the Gaussian-distributed shift
errors (including ancilla noise) have variance 7σ2, and
two others have variance 5σ2. Therefore, the probability
that at least one of those corrections fails is

perr ¼ 1 −
�
erf

� ffiffiffi
π

p

2
ffiffiffiffiffi
14

p
σ

��
2
�
erf

� ffiffiffi
π

p

2
ffiffiffiffiffi
10

p
σ

��
2

. (3)

When perr < pFT for the fault-tolerance threshold pFT for
some qubit error-correcting code [33], we can concatenate
the GKP code with that code and perform fault-tolerant
measurement-based quantum computation. The variance σ2

identified by this condition corresponds to a squeezing
threshold of

s > −10 log10

�
σ2

1=2

�
. (4)

For pFT ¼ 10−6, which is a typical (and rather
conservative) threshold for concatenated codes [25–27],
this means that σ2 < 4.44 × 10−3, which corresponds to
s > 20.5 dB. Figure 1 shows a plot of this curve for
intermediate squeezing levels, while Table II in the
Supplemental Material [54] lists the squeezing correspond-
ing to several other typical threshold values.
Magic-state distillation.—With nearly perfect Clifford

gates in hand, computational universality is achieved by
guaranteeing the ability to distill a so-called magic state
from many noisy copies [50]. The procedure doesn’t have
to work every time, but when it does work, it has to produce
a noisy state with sufficient fidelity to the state of interest.
Fortunately, the noise thresholds for magic-state distillation
are as high as 14%–17% in some cases [51], significantly
less stringent than the Clifford-gate requirements of ∼10−6.
As such, we can effectively ignore the errors introduced by
the Clifford operations entirely [50,52,53].
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Previous work has focused on the cubic phase state
[18,32], but distilling this state requires an asymmetric
noise model [32]. The natural noise model of CV cluster-
state QC is symmetric in q̂ and p̂ on average [18,19], which
is preferred when distilling an encoded Hadamard eigen-
state j �HLi [32]. Either state can be used to implement an
encoded π=8 gate [32].
Since F̂j �HLi ¼ �j �HLi, a Hadamard eigenstate

can be constructed by counting photons on one half of
an encoded Bell pair [32], which can be created by
applying a ĈZ gate to jþLi ⊗ jþLi, using measurements
as discussed above. Then, we count photons on one side
and obtain an outcome n. In the ideal case, if n
mod 4 ¼ f0; 2g, then the remotely prepared state is
j �HLi, respectively (and an odd n is impossible). In
the physical case, of course, errors in the encoded Bell pair
will reduce this fidelity of identification and corrupt the
average output state. As such, if we get an odd n, we know
an error has occurred, so we discard the state and start over.
If n is even, then ε is the probability that it reveals the
wrong state at the output.
Reference [51] identifies ε < 0.146 as a tight threshold

for being able to distill the resulting state [50], and this
threshold holds even when distilling using noisy Clifford
gates [53]. Assuming we begin with pure ancillas, the error
probability ε is between 12.5% and 12.6% for squeezing
between 12.8 and 20.5 dB (Clifford-gate error rate of 10−1

to 10−6, according to Fig. 1), with a success probability
(i.e., probability of obtaining an even outcome) of 2=3.
Since ε < 14.6%, distillation is possible, thus completing
the proof of fault tolerance for measurement-based QC
using CV cluster states. Section II of the Supplemental
Material [54] contains the details of the calculation, as well
as some possible ways to optimize this method.

Universal resources.—Since the clusters used to perform
Clifford gates and distill magic states all fit within a regular
square lattice, we can create a universal resource by starting
with an ordinary square-lattice CV cluster state of sufficient
size and attaching GKP ancillas at regular intervals, like
flowers growing in a regular pattern in the “garden” of the
original lattice. One can even measure the ancillas directly
after attachment. Either way, attaching the ancillas early
means we are using a non-Gaussian resource state, evading
known no-go results [22,23].
Alternatively, one can think of the act of attaching

ancillas and measuring p̂ as a single operation of non-
destructively measuring q̂mod

ffiffiffi
π

p
(with some noise). Thus,

we can simply add to our toolbox of measurements a
nondestructive measurement of q̂ mod

ffiffiffi
π

p
and view the

original Gaussian cluster states as universal for fault-
tolerant quantum computation using this augmented
suite of measurements. This evades the no-go results of
Refs. [22,23] because active error correction and concat-
enation are being used, which mean that the required size of
the encoding will grow (albeit slowly) with the length of the
computation [25].
Extensions.—While this analysis focuses exclusively on

finite-squeezing noise, it can be straightforwardly gener-
alized to include additional local Gaussian noise, photon
loss, and detector inefficiency. While these extensions will
generalize the threshold to also be a function of the
additional noise parameters, they are not expected to
change the fundamental result, which is the existence of
some finite threshold.
Conclusion.—This is a theoretical breakthrough in our

understanding of what is possible using measurement-
based quantum computation with continuous-variable
cluster states. With an appropriate qubit encoding, active
error correction, and initial squeezing above a constant
finite threshold, continuous-variable cluster states are
universal for fault-tolerant measurement-based quantum
computation of indefinite length.
While the encoding scheme presented here may be

nonoptimal due to the prohibitive nature of the required
states, it has at least the flavor of practicality since multi-
qubit Clifford operations require only Gaussian unitaries.
Furthermore, the existence of a finite squeezing threshold
for continuous-variable cluster states when using this
encoding may well spur new experimental developments
in implementing these challenging states.
Regardless of the scheme’s feasibility, a finite squeezing

threshold is now known to exist for continuous-variable
cluster states. This means that work can continue with
confidence toward designing better schemes, improving the
threshold, and achieving higher levels of squeezing.

I am grateful to Steven Flammia, Stephen Bartlett,
Akimasa Miyake, and Peter van Loock for discussions.
This work was supported by the Australian Research
Council under Grant No. DE120102204.

FIG. 1 (color online). Qubit-level logical error rate induced by
GKP error correction with CV cluster states. The indicated level of
squeezing is assumed to apply both to the initial momentum-
squeezed states used to create the cluster state and in the Gaussian
spikes that comprise the encoded GKP states. Also shown:
maximum single-mode squeezing achieved to date (12.7 dB)
[48,49] and squeezing achieved in a large CV cluster state
(5 dB) [9].
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