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Hyperfine Splitting in Positronium to O(a’m,): One Photon Annihilation Contribution
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We present the complete result for the O(a’m,) one photon annihilation contribution to the hyperfine
splitting of the ground state energy levels in positronium. Numerically it increases the prediction of

quantum electrodynamics by 217 £ 1 kHz.
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Positronium, an electromagnetic bound state of an
electron and a positron, is the lightest known atom. The
strong interaction effects in positronium are suppressed by
the small ratio of the electron mass m, to the hadronic mass
scale, and the properties of the bound state can be
calculated perturbatively in quantum electrodynamics
(QED) as an expansion in Sommerfeld’s fine-structure
constant «, with very high precision only limited by the
complexity of the calculations. Positronium is thus a unique
laboratory for testing the QED theory of weakly bound
systems. At the same time a deviation of the QED
predictions from the results of experimental measurements
may be a signal of an exotic “new physics” [1].

Positronium hyperfine splitting (HFS) is defined by the
mass difference between the spin-triplet orthopositronium
and spin-singlet parapositronium states. Already, three
decades ago, HFS in positronium was determined with
the precision of about ten parts in a million [2,3] yielding

AveP = 203.3875(16) GHz (1)

and
Avf*P = 203.389 10(74) GHz, 2)

respectively. Recently, a new result with reduced systematic
uncertainty from the positronium thermalization effect has
been reported [4],

AP = 203.3942(16),, (13), GHz, 3)

syst.

which overshoots the previous measurements by 2.6
standard deviations.

The present theoretical knowledge may be summarized
as
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where A0 = (7/12)a*m, is the leading-order result
[5-7]. The first-order term in Eq. (4) was computed in
Ref. [8]. The second-order corrections have been derived by
several authors [9-21]. In the order a’m, the double-
logarithmic [22] and the single-logarithmic terms [23-25]
are known, while the nonlogarithmic coefficient D is not yet
available. Including all the terms known so far, we have [25]

Av™ = 203.391 69(41) GHz, 5)

where the error is estimated by the size of the third-order
nonlogarithmic contribution to the HFS in a muonium atom
[26], which, however, does not include annihilation and
recoil effects. The result, Eq. (5), is above the experimental
values, Eqgs. (1) and (2), by 2.6 and 3.5 standard deviations,
respectively. At the same time, it is only 1.2 standard
deviations below the most recent result, Eq. (3). Thus the
status of the QED prediction for positronium HFS remains
ambiguous.

Much activity is currently under way to improve the
experimental precision [27,28]. On the theoretical side the
accuracy is limited by the unknown third-order coefficient
D. The corresponding uncertainty may soon become a
limiting factor in the study of positronium HFS and the
calculation of the nonlogarithmic third-order term in Eq. (5)
would be timely. This calculation, however, is an extremely
challenging problem of perturbative quantum field theory
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complicated by the presence of multiple scales and bound-
state dynamics.

In this Letter we make the first major step towards the
solution of this problem and present the complete result for
the O(m,a’) one photon annihilation contribution. The
perturbative corrections to HFS split into nonannihilation
(radiative, radiative-recoil, and recoil corrections), one and
multiple photon annihilation contributions. The nonanni-
hilation and one photon annihilation parts constitute about
47% and 32% of the second-order nonlogarithmic correc-
tion, respectively. Thus the one photon annihilation con-
tribution to the coefficient D presumably gives a significant
fraction of the total nonlogarithmic third-order correction.

In the following, we briefly outline our method of
calculation. Perturbation theory of the positronium bound
state has to be developed about the nonrelativistic Coulomb
approximation rather than free electron and positron states.
This can be done within the nonrelativistic effective field
theory [29], which is a systematic way to separate the
multiple scales characteristic to the bound-state problem.
The bound-state dynamics involves three different scales:
the hard scale of electron mass m,, the soft scale of the
bound-state three-momentum am,, and the bound-state
energy a’m,. Integrating out the hard and soft degrees of
freedom results in the potential nonrelativistic QED
(pPNRQED) [30], an effective Schrodinger theory of a
nonrelativistic electron-positron pair interacting with ultra-
soft photons, which is a relevant framework for the
calculation of the QED corrections to the positronium
spectrum. We use dimensional regularization to deal with
spurious divergences which appear in the process of scale
separation. Systematic use of dimensional regularization
[19,31,32], based on the asymptotic expansion approach
[33,34], is instrumental for the high-order analysis as it
provides “built in” matching of the effective theory
calculations to full QED.

The positronium HFS is given by the difference between
the binding energy of the orthopositronium and paraposi-
tronium states Av = E, — E,,. The leading order result can
be written as AvMC = ([i] . + 3], )a*m,, where nonanni-
hilation (scattering) and one photon annihilation contribu-
tions are given separately. By spin and parity conservation
only the orthopositronium state is affected by the one
photon annihilation. The corresponding correction to the
binding energy E, can be obtained by studying the
threshold behavior of the vacuum polarization function

I(4?)
(40— GuaTI(G?) = i / e (0], (x),(0)]0).
(6)

where j, is the electromagnetic current, > = (2m, + E)?
and E is the energy counted from the threshold. Only
one-particle irreducible contributions are retained on the

right-hand side of Eq. (6) and the on-shell renormalization
of the QED coupling constant requires I1(0) = 0. The
vacuum polarization function has bound-state poles at
approximately Coulomb energies ES = —a*m, /(4n*) with
spin (orbital) angular momentum S = 1 (I = 0). Near the
orthopositronium ground-state energy E, = ES + O(a?) it
reads

a R
m () =% fo 7
dm ) = B E —1 - )

where E! stands for E, without the total one photon
annihilation contribution. The pole position differs from
the physical orthopositronium mass since the vacuum
polarization function is defined as the one-particle irreduc-
ible contribution to the current correlator (6). By sub-
tracting the pole one gets the regular part of the vacuum
polarization function at E = E/,

2
a’R, ) ®)

P, = lim ( I(P) - — 210
0 lm<e R g

E—E,
Within the quantum-mechanical perturbation theory of
pPNRQED it is straightforward to derive the following

expression for the one photon annihilation contribution
to the HFS

a*m, R,
4 1+P,

€))

I—y 1—y
Aann ¥ = Aann Eo =

The factor R, in this equation has a natural interpretation:
annihilation is a local process which probes the positro-
nium wave function at the origin and the residue of Eq. (7)
defines this quantity in full QED beyond nonrelativistic
quantum mechanics. On the other hand, the factor 1/(1 +
P,) results from the Dyson resummation of the vacuum
polarization corrections to the off-shell photon propagator
in the annihilation amplitude. Equation (9) can be com-
puted order by order in perturbation theory,

{HZ(O‘)"W} (10)
n=1 4

where the coefficients 4" are determined by the series
Ro =1+ anl((x/ﬂylr(") and Po = Zn:l(a/ﬂylp(n) SO
that A) = r() — p(1) and so on. For the calculation of the
third order corrections to the HFS we need all coefficients
r™ and p up to n = 3. Typical three-loop Feynman
diagrams contributing to R, and P, are presented in Fig. 1.

The first-order coefficients get only a one-loop hard
contribution 7)) = —4 and p(V) =8/9, which yields
h(") = —44/9. In the second order the soft scale starts to
contribute and one has to take into account an arbitrary
number of Coulomb photon exchanges. The second-order
correction to R, can be read off the QCD result for the

4
1-y a'm,
Agnv = 4
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(a) (b)

FIG. 1. Three-loop Feynman diagrams contributing to (a) R,
and (b) P,,.

photon-mediated heavy quarkonium production rate
[35-38] by adopting the QED group factors Cr =1,
C, =0, Tp =1, as well as the number of the light (heavy)
fermions n; =0 (n, = 1)

527 2 235
@ =224 (—Zhhe-22
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where {(3) =1.20206... is a value of Riemann’s zeta
function. By using the method outlined above we evaluate
the second-order correction to P, with the result

3 27 In2
@ == 1 — 12
p 4+< na+ e 2) C() (12)
This gives
1477 Inae 1183 9
h? = —— - In2
81 ( 6 288 +4 > + C()
13)

in agreement with Ref. [16].

The third-order coefficients get contributions from all the
scales present in the problem. By adjusting the QCD results
[39,40] we obtain the following expression:

383 3 7
() =22 In? —— 4+8In2)1
r 18+[2na+<9o+8n>na
1019 109 o)
— e _4In2+ &% 2€UB)——*+2
150 + (,]n +263) g 7+ 2

(14)

Here 6%° is an analog of the Bethe logarithm in hydrogen
Lamb shift, which parametrizes the ultrasoft contribution
[39]. It does not scale with the group factors and requires
independent evaluation in the QED case, which gives
55 = 18.8646(17) in agreement with Ref. [41]. The
coefficient c(b%) in Eq. (14) parametrizes the third-order
hard contribution to the Wilson coefficient in the effective
theory decomposition of the vector current j = ¢,y 6y +
.. in terms of the nonrelativistic electron and positron two-
component Pauli spinors y and y. The third-order term of
the perturbative series ¢, = 1+ > %, (a/ﬂ)”cg;") is given
by the three-loop vertex diagrams [see, e.g., Fig. 1(a)]
evaluated at the threshold and has been recently computed

in QCD [42]. The coefficients of the series are in general
infrared divergent. These spurious divergences result from
the scale separation in the effective theory framework and
cancel out in the final result for physical observables. The
value c:%) = 35.76 £0.53 corresponds to the coefficient
cv3 defined within the MS subtraction scheme at the
renormalization scale 4 = m,. The logarithmic part of
Eq. (14) agrees with Ref. [43]. The third-order term in
Eq. (8) reads

p® = (2Ina-3)z? +p§,%), (15)

where the last term parametrizes the third-order hard
contribution given by the three-loop vacuum polarization
diagrams [see, e.g., Fig. 1(b)] evaluated at the threshold. As
in the case of the vertex correction, this quantity is infrared
divergent and the coefficient szo) =0.16 £0.04 corre-
sponds to the MS subtraction scheme with y = m,. By
adding up all the relevant terms we get

3 1181 ;
HO) = > xln’a + <_W+ 81n2>7r21na+h(()),

(16)

where the nonlogarithmic part reads
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or numerically h(()3) =197.8 £ 1.1. In the above equation
the scheme dependence of the coefficients cgj)) and ph3O is
canceled by the scheme dependence of the analytic part,
which is also given in the MS scheme. From the effective
theory point of view the structure of the third-order
logarithmic corrections in the one-photon annihilation
contribution to the positronium HFES is identical to the
orthopositronium three-photon decay width. The coeffi-
cients of the logarithmic terms in Eq. (16) do agree with the
series for the width [44-46] up to a substitution of the
coefficient 4 i 2h( ) in the interference term between
the one- loop and the two-loop single-logarithmic
corrections.

Finally, for the third-order nonlogarithmic one photon
annihilation contribution to the HFS we obtain

3
1 3
Danny = h(() )

7 =84.8+£0.5, (18)

which is the main result of this Letter. The coefficients of
the third-order corrections to HFS in a positronium and
muonium atom [26] are compared in Table I. It is
interesting to note that the ultrasoft contribution due to
0y° approximates the complete result [Eq. (18)] with 5%
accuracy. The nonannihilation contribution includes a
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TABLE 1. The coefficients of @’/z in perturbative series for
positronium and muonium HFS.

In? Ina D/x*
Positronium —(62/15)+(68/7)In2~2.6001 8.59(5);{{

16.233

3
T2
Muonium  —%  —(281/180) +$In2~0.2873

similar term and we may speculate that it is also dominated
by the ultrasoft contribution. This does not seem implau-
sible since the fully relativistic corrections from the hard
scale are known to usually be suppressed. For example,
the pure radiative corrections to the HFS related to the
electron anomalous magnetic moment a,, A,v=
(a*m,/4)[(1 + a,)* — 1], gives only a tiny contribution
D, =1.16229..., where we used the two and three-loop
result for a, [10,47]. In this case the nonannihilation
contribution would be given by Dy ~ (47%/7)5% ~ 106,
which slightly exceeds the one photon annihilation con-
tribution [Eq. (18)] in full analogy with the structure of the
second-order corrections. Then we get an estimate
D ~ 191, which is close to the muonium result.

To summarize, in this Letter we presented the O(a’m,)
one photon annihilation contribution to the positronium
HFS, which is the first nontrivial third-order QED result in
positronium spectroscopy beyond the logarithmic approxi-
mation. This opens the prospect of advancing the theoreti-
cal analysis of positronium to a completely different level
of precision. Our final prediction for the positronium HFS
including the O(a’m,) one photon annihilation term reads

AVt = 203.39191(22) GHz. (19)

The error due to the missing part of the O(a’m,) corrections
is given by the size of the evaluated one photon annihilation
contribution [Eq. (18)]. This agrees with an error estimate
based on the approximation of the nonannihilation correc-
tion by the ultrasoft contribution discussed above. However,
we should emphasize that the above estimates give only a
rough idea of the scale of the missing terms and the
calculation of the remaining part of the third-order correc-
tions is mandatory for reducing the theoretical uncertainty
significantly below the experimental one.
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