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We show how engineered classical noise can be used to generate constrained Hamiltonian dynamics
in atomic quantum simulators of many-body systems, taking advantage of the continuous Zeno effect.
After discussing the general theoretical framework, we focus on applications in the context of lattice
gauge theories, where imposing exotic, quasilocal constraints is usually challenging. We demonstrate the
effectiveness of the scheme for both Abelian and non-Abelian gauge theories, and discuss how engineering
dissipative constraints substitutes complicated, nonlocal interaction patterns by global coupling to laser
fields.
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Laboratory experiments with atomic quantum-degenerate
gases have established a synergetic link between atomic
physics and condensed matter [1–3], and hold prospects
for a similar connection to high-energy physics [4–12].
Loaded into optical lattices, cold atoms realize Hubbard
models, which can be designed and controlled via external
fields to mimic the dynamics of quantum many-body sys-
tems in equilibrium and nonequilibrium situations [3,13].
While a focus of research during the last decade has been
the development of a toolbox for designing specific lattice
Hamiltonians [1–3], we address below the problem of imp-
lementing desired Hubbard dynamics in the presence of
constraints; i.e., we wish to keep the system dynamics within
a certain subspace of the total Hilbert space. A familiar way of
imposing such constraints is to add an energy penalty to the
Hamiltonian [14]. Below, we describe an alternative scenario
that is based on driving the system with engineered classical
noise, exploiting the Zeno effect [15–20]. As we will see,
“adding noise” provides a general tool to implement—in
an experimentally efficient and accessible way—highly non-
trivial constraints in quantum many-body systems.
The present work is motivated by the ongoing quest to

build a quantum simulator for Abelian and non-Abelian
lattice gauge theories (LGTs) with cold atoms in optical
lattices [5–12]. LGTs play a prominent role in both particle
and condensed matter physics: in the standard model, the
interaction between constituents of matter are mediated by
gauge bosons [21–24], and in frustrated magnetism, quan-
tum spin liquids are suitably described in the language of
gauge theories [14,25,26]. The key feature of a LGT is
the presence of local (gauge) symmetries. The generators
Ga

x of these local gauge transformations, with x denoting
lattice sites and a a color index, commute with the lattice
Hamiltonian, ½H0; Ga

x� ¼ 0 for all x, a, and thus provide
local conservation laws. They can be interpreted in analogy

to Gauss’s law from electrodynamics, as they constrain the
dynamics of the system to a physical subspaceHP given by
the constraints Ga

x jψi ¼ 0 [27]. In high-energy physics,
gauge symmetries are from fundamental considerations
exact, but in quantum simulations these symmetries will
normally be approximate on some level in the microscopic
model. Thus, the microscopic Hamiltonian will be of the
form Hmicro ¼ H0 þH1, with H0 ∼ J the desired gauge-
invariant part, and H1 ∼ λ a perturbation, which drives the
system dynamics outside of the gauge-invariant subspace
HP , see Fig. 1(a). A central challenge of quantum simu-
lating LGTs is to introduce mechanisms that suppress these
errors.
Gauge constraints via classical noise.—A common strat-

egy to restrict the dynamics to a certain subspace is by
adding an energy penalty to the microscopic Hamiltonian:
Hmicro ¼ H0 þH1 þHU, with HU ∼U ≫ λ. In this case,
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FIG. 1 (color online). Dissipative protection of gauge invari-
ance in implementations of a lattice gauge theory (LGT). (a) The
dynamics H0 happens within the physically relevant subspace
HP , defined by Ga

x jψi ¼ 0, but gauge-variant perturbations H1

may drive the system into the unphysical subspace HQ (where
Ga

x jψi ≠ 0). (b) LGTs consist of fermions ψx living on sites,
coupled to gauge fields Ux;xþ1 living on links. The dynamics can
be constrained to the physical subspace by coupling independent
noise sources linearly to each generator. The multisite structure
of the generators implies that the noise has to be correlated
quasilocally in space.
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to order λ2=U, manifolds with different eigenvalues of HU
become decoupled. In the context of LGTs, one can use
HU ¼ U

P
x;aðGa

xÞ2 to impose the Gauss law constraints
[5,7,9,14,28,29]. Since in a LGT the generators Ga

x are
complicated expressions of the matter and gauge fields—
especially in non-Abelian models—adding an interaction
term involving the square of these poses a formidable
challenge [30]. In contrast, we pursue here the strategy of
enforcing the constraints Ga

x jψi ¼ 0 by adding classical
noise terms [31,32] to the microscopic Hamiltonian

HmicroðtÞ ¼ H0 þH1 þ
ffiffiffiffiffi
2κ

p X

x;a

ξaxðtÞGa
x; (1)

which are linear inGa
x and involve independent white-noise

processes ξaxðtÞwith hhξaxðtÞξbyðt0Þii ¼ δxyδabδðt − t0Þ. Each
realization of the noise will give rise to an evolution of
the system described by a stochastic state vector jψðtÞi.
Averaging over the noise fluctuations leads to the density
operator ρ ¼ hhjψðtÞihψðtÞjii, obeying the master equation
(see the Supplemental Material [33])

ρ
: ¼ −iHeffρþ iρH†

eff þ 2κ
X

x;a

Ga
xρGa

x; (2)

with non-Hermitian Hamiltonian Heff ,

Heff ¼ H0 þH1 − iκ
X

x;a

ðGa
xÞ2:

The effective Hamiltonian Heff contains a damping term
involving the square of the generators, introduced by the
noisy single-particle terms in Hamiltonian Eq. (1). For
κ=λ ≫ 1, this term constrains the evolution to HP . In fact,
this scale separation of a large rate vs a small energy
scale provides the dissipative analogue of the energetic
protection described above, which relies on the separation
of two energy scales. In the present case, the protection
term arises from a linear coupling of the generators to a
classical noise source, which—in contrast to an energy
penalty HU—does not require complicated, nonlocal two-
body interactions.
To demonstrate the dissipative protection explicitly, we

integrate out the dynamics of the gauge-variant space HQ,
defined by Ga

x jψi ≠ 0, to leading order in λ=κ. Denoting by
P the projector on HP , we obtain the following master
equation for the gauge-invariant part of the density operator
ρPP ¼ PρP:

ρ
:
PP ¼ −i ~HeffρPP þ iρPP ~H†

eff ;

with effective non-Hermitian Hamiltonian

~Heff ≈ PðH0 þH1ÞP − iPH1Q
1

κ
P

x;aðGa
xÞ2

QH1P; (3)

where Q ¼ 1 − P (see the Supplemental Material [33]).
Starting from an initial state jψ0i ∈ HP , the evolution
under this Hamiltonian is restricted to HP , but reduces
the norm of the state vector, signifying the transfer of
population to the gauge-variant subspace HQ. This pop-
ulation transfer sets a time scale t≲ κ=λ2 below which
the dissipative protection of local quantities is effective.
Therefore, in the strong-noise limit considered in this work,
gauge invariance is protected for long times compared to
the time scales at which errors accumulate without the
engineered noise, t ∼ 1=λ.
This suppression of transitions by fast classical fluc-

tuations is related to motional narrowing [34,35], and to
dynamical decoupling techniques [36] such as bang-bang
control [16,37], which suppress unwanted couplings to an
environment, e.g., in a quantum information context. More
specifically, our scheme can be seen as a classical analogue
of the quantum Zeno effect [17,38], which has been dis-
cussed in the context of quantum control [18–20], but also
of quantum many-body systems [39–42]. In the standard
quantum Zeno effect, the required dissipation originates
from an interaction of the system with quantum fluctuations
of the bath or frequent measurements, while here the
dissipation is simulated by classical fluctuations of the
perturbation field.
Dissipative protection in Abelian LGTs.—As a first

illustrative and conceptually simple example, we demon-
strate protection of gauge invariance in a one-dimensional
U(1) lattice model, the Schwinger model, whose
Hamiltonian takes the form [43]

H0 ¼
X

x

½Jðψ†
xUx;xþ1ψxþ1 þ H:c:Þ

þmð−1Þxψ†
xψx þ

~g2

2
E2
x;xþ1�: (4)

Here, ψx are (staggered) fermionic matter fields defined
on the vertices of the lattice, Ux;xþ1 are the gauge fields
defined on the bonds between x and xþ 1 [see Fig. 1(b)],
and Ex;xþ1 is the corresponding electric field, satisfying
½Ex;xþ1;Ux;xþ1� ¼ Ux;xþ1 [21–24]. The potential term ∼m
corresponds to a mass term for the fermionic fields,
whose alternating sign stems from the use of “staggered
fermions” [25]; J and ~g are the tunneling and gauge-
coupling coefficients, respectively. The generators of the
Uð1Þ gauge transformations for this model are given by
Gx ¼ ψ†

xψx − Ex;xþ1 þ Ex−1;x þ ½ð−1Þx − 1�=2. The corre-
sponding Gauss law Gxjψi ¼ 0 is the lattice equivalent
of the one of continuum quantum electrodynamics. In the
Wilson formulation of LGTs [25,44], Ux;xþ1 are complex
phase variables, but for our purposes the quantum link
model (QLM) formalism [43,45–48] is more convenient,
where the link variables are represented by spin degrees of
freedom, i.e., Ux;xþ1 ≡ Sþx;xþ1; Ex;xþ1 ≡ Szx;xþ1. We choose
here a representation using spin-1=2 degrees of freedom,
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which corresponds to a 1D version of the Schwinger model
with a finite electric flux running through the system,
also corresponding to a finite θ angle [5,43]. Despite its
simplicity, this model displays various interesting features
related to gauge theories, such as confinement and string-
breaking phenomena [5,43].
The system dynamics between two sites as induced by

Eq. (4) is sketched in Figs. 2(a) and 2(b). On the left-hand
side, a typical gauge-invariant state jφi is illustrated,
where the Gauss law is satisfied at both vertices. Under
the action of the correlated tunneling contained in H0,
ðψ†

xþ1S
−
x;xþ1ψx þ H:c:Þ, the fermion tunnels from x to

xþ 1, and the center spin ~Sx;xþ1 flips, preserving gauge
invariance in the final state jφ0i. Processes of this
kind describe the creation of a particle-antiparticle pair
accompanied by an excitation of the gauge field.
In typical implementations, additional gauge-variant
imperfections appear, such as single-fermion tunneling

H1 ¼ λ
P

xðψ†
xþ1ψx þ H:c:Þ. Once such processes are

allowed, the system dynamics involves states of the form
jφ0i, where the condition Gxjφ0i ¼ 0 is not satisfied for all
x, thus leading to leakage into HQ. Imperfections of this
kind correspond to a creation of a particle-antiparticle pair
without any effect on the gauge fields, destroying gauge
invariance.
To illustrate the dissipative protection in this model,

we study quantum-quench dynamics as illustrated in
Figs. 2(c)–(f), where we prepare the system in the ground
state of m ¼ ∞ and quench to m ¼ 0 at time t ¼ 0.
The system evolves under H0 given by Eq. (4) plus a
gauge-variant fermion hopping H1 [49]. For λ ≠ 0, gauge
invariance is clearly violated and the evolution of
observables deviates from the ideal case [thin red curves in
panels (c)–(e)]. Increasing the strength κ of the dissipation
(green dashed curves) gradually restores the ideal dynamics
(blue curves). The expected scaling ∝ 1=κ of the protection
mechanism is confirmed in panel (f). While this example
illustrates that the dissipative protection works in principle,
we now apply the same mechanism to a more complicated
non-Abelian LGT, where enforcing gauge invariance via
noise may prove a considerable advantage in the design
of an atomic quantum simulator.
Dissipative protection in non-Abelian LGTs.—We now

illustrate the dissipative protection of gauge invariance for
a non-Abelian LGT, namely a U(2) QLM that may be
realistically realized in cold-atom experiments (see below).
The presence of color (gauge) degrees of freedom allows
us to investigate, in this simplified model, physical phe-
nomena related to general non-Abelian gauge theories like
QCD, such as chiral symmetry breaking and confinement,
and its phase diagram may support exotic condensate
phases [9]. Its Hamiltonian, which belongs to a class of
more general QLMs including UðNÞ and SUðNÞ sym-
metries, reads H0 ¼ HJ þHm [50], where Hm ¼
m
P

xð−1Þxψα†
x ψα

x describes staggered fermions and HJ
is the interaction between matter and gauge field

HJ ¼ J
X

x

ψα†
x Uαβ

x;xþ1ψ
β
xþ1 þ H:c:

≡ J
X

x

ψα†
x rαxl

β†
xþ1ψ

β
xþ1 þ H:c: (5)

Here, α, β ¼ 1, 2 represents the U(2) color degree of
freedom (repeated indices are contracted). As before, the
fermionic matter fields ψα

x live on the vertices of a lattice,
while for non-Abelian gauge fields it is convenient to
represent link variables by rishon fermionic fields lαx and rαx
living on the links to the left and right of a given site,
Uαβ
x;xþ1 ≡ rαxl

β†
xþ1 [43,48] [see Fig. 3(a)]. The U(2) gauge

symmetry is split into a U(1) part, with generator

Gx ¼ ψα†
x ψα

x − ðlα†xþ1l
α
xþ1 − rα†x rαxÞ=2

þ ðlα†x lαx − rα†x−1rαx−1Þ=2 − 1;

and a SU(2) part, with generators
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FIG. 2 (color online). (a) System dynamics of a U(1) LGT in the
ideal case (H0, top) and under the effect of undesired single
particle tunneling (H1, bottom); (b) on-site Hilbert spaces. (c)–(f)
Dissipative protection of quench dynamics in a Uð1Þ QLM
with Ns ¼ 4 sites connected by Nl ¼ 3 links (open boundary
conditions). (c) Population of gauge-invariant subspace. (d), (f)
Average violation of gauge constraint, quantified by g2 ¼P

xG
2
x=Ns. (e) Average electric field E ¼ P

xEx;xþ1=Nl. In
panels (c)–(e), blue curves indicate the ideal dynamics. Thin
red curves show the detrimental influence of gauge-variant
fermion tunneling (λ=J ¼ 0.25). The arrows (from red to blue)
show how increasing κ restores the ideal dynamics (green dashed
curves; κ=J ¼ 1, 2.5, 5, 10, 20, 40, 80). Panel (f) shows the
scaling with κ of hg2i at a fixed time; the black line is a guide to
the eye indicating a scaling ∝ 1=κ. All results are obtained from
the full master equation with Hamiltonian H0 þH1 (see text),
starting from the eigenstate of H0 for m → ∞.
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Ga
x ¼ ψα†

x σaαβψ
β
x þ rα†x σaαβr

β
x þ lα†x σaαβl

β
x; a ¼ 1; 2; 3:

The Ga
x commute with all Gx and satisfy ½Ga

x; Gb
y � ¼

2iδxyϵabcGc
x, where ϵabc is the Levi-Cività tensor and σa

are Pauli matrices.
The basic system dynamics described byHJ is illustrated

in Fig. 3(a): it corresponds to a simultaneous hopping
of two particles, namely, ψx to rx and simultaneously
lxþ1 to ψxþ1. The color of both particles is preserved
during the process (½H0; Ga

x� ¼ 0). In a typical
microscopic implementation, one may obtain additional,
undesired color-changing terms of the form Hð1Þ

1 ¼
λ
P

xðψ2†
xþ1l

1
xþ1r

1†
x ψ2

x þ H:c:Þ, as illustrated in Fig. 3(b).
These do not commute with all generators, and therefore
violate gauge invariance. To estimate the effect of terms
such as this one, we analyzed the exact time evolution
for two building blocks of the U(2) model. We included
various realistic errors similar to Hð1Þ

1 that are specific
for the cold-atom implementation described in the
Supplemental Material [33], comprising a large class of
generic errors. As Fig. 3(c) shows, without protection
the mean value of the sum of all generators, g2 ¼P

x½G2
x þ

P
aðGa

xÞ2�=Ns, quickly acquires large values,
indicating the loss of gauge invariance (red solid line).
However, under the noise protection generated by Eq. (1),
gauge invariance may be retained on the time scale of
several tunneling events (green dashed lines). This example
demonstrates that the proposed protection mechanism
works also for more complicated non-Abelian models
including several noncommuting generators.
Optical-lattice implementation.—In ultracold-atom

implementations where the color index is represented by
different internal atomic states, the standard strategy to
suppress gauge-variant terms via quadratic energy penalties
UðGa

xÞ2 amounts to engineering numerous local and non-
local interactions with fine-tuned coefficients. From this

regard, our dissipative approach is advantageous, since the
preservation of gauge invariance requires driving the
system with terms that are only linear in the generators.
In the ultracold-atoms setting, the on-site single-particle
noise terms ξaxðtÞGa

x can be realized by coupling internal
atomic states to laser fields with suitable amplitude or
phase noise, where noisy ac-Stark shifts and Raman
processes allow us to impose the constraints on Gx and
G3

x as well as G1;2
x (see the Supplemental Material [33]).

Using high-resolution objectives [51–54], it is possible to
engineer an independent noise source for each generator,
as required by Eq. (1). However, in the common case
where the dominant gauge-variant perturbations couple
only nearest neighbors, one can simplify the experimental
setup by using a noise pattern that is repeated periodically.
In this way, one can enforce local gauge invariance
by using global addressing together with a superlattice
structure [33].
The last ingredient to quantum simulate the SU(2) LGT

is then a natural realization of H0 that does not interfere
with the dissipative protection and thus does not lead to
undesired heating of the system by the noise. In the
Supplemental Material [33], we illustrate how models with
UðNÞ interactions (in particular focusing on the concep-
tually simpler U(2) case) can be engineered in spinor gases,
where spin-changing collisions combined with state-
dependent optical potentials provide a natural realization
of the two-body interaction terms constituting HJ. Ideas
along these lines for Abelian theories have also been
discussed in Ref. [12].
The scheme outlined above could also be combined with

energetic protection in cases where, e.g., the interactions
only protect an Abelian symmetry, while the more chal-
lenging non-Abelian contributions are imposed via noise.
This would facilitate the realization of previous proposals
[9], extending their regime of applicability and providing
additional means to improve the accuracy of gauge invari-
ance in microscopic realizations.
Scaling and imperfections.—In contrast to quantum-

computing purposes, we are interested here in many-body
properties, such as the expectation value of low-order
correlations and order parameters [55]. This ensures, in
general, better scalability properties: while the leakage out
of the P subspace is expected to increase with the system
size, order parameters that quantify gauge invariance, such
as g2, are not severely affected by the system size itself.
While checking these expectations for sufficiently large
system sizes with LGTs is outside of computational
capabilities, we have tested these scalings in the context
of a simplified model where local conservation laws are
imposed in the same dissipative manner. The results are
described in the Supplemental Material [33] and clearly
support these claims.
To further address the feasibility of our proposal, we

have performed a numerical analysis of typical error

(a)
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FIG. 3 (color online). U(2) LGT. (a) Basic dynamics of Eq. (5).
The matter/gauge-field coupling corresponds to a simultaneous
color-conserving tunneling of one fermion at site x to the link x,
xþ 1 (red) and a rishon at x, xþ 1 to the site xþ 1 (blue, dashed).
Matter and rishon sites are denoted by squares and circles,
respectively; the blocks x and xþ 1 are indicated by continuous
and dashed contours. (b) An example for a gauge-variant process:
correlated tunneling similar to panel (a), but accompanied by a
change of color. (c) Numerical analysis of two building blocks,
evolving under H0 plus various error terms (calculations for the
full master equation (2); for details see the Supplemental Material
[33]). Thin red line: κ ¼ 0, green dashed lines: κ=J ¼ 5, 10, 20,
40, 80, 160 (increasing along the arrow).
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sources in realistic setups, such as particle loss and
imperfect noise addressing. In particular, we found that
the effects of the latter commonly scale as ϵ2κ for short time
scales, where ϵ is the strength of the imperfections, and not
as ϵκ as naively expected. This is due to the particular
characteristics of the most common addressing errors,
which do not directly affect the gauge invariant subspace
(see Ref. [33] for details).
Conclusions and outlook.—We have shown how

classical noise can serve as a resource to engineer con-
strained Hamiltonian dynamics in quantum simulators,
and in particular how Abelian and non-Abelian gauge
invariance can be protected in atomic lattice implem-
entations. The dissipative scheme has advantages with
respect to the more conventional energy punishment, as
coupling to generators is linear, local, and introduced by a
physical resource which is independent of the engineered
Hamiltonian dynamics. For gauge-variant perturbations
that do not couple distant sites, the noise protection can
be realized by global beams in a superlattice configuration.
The mechanism is universal, as it can be extended to any
symmetry and dimensionality, and can be applied to
different microscopic systems beyond cold atom gases,
such as superconducting qubits and trapped ions [28,29].
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