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Contextuality is central to both the foundations of quantum theory and to the novel information processing
tasks. Despite some recent proposals, it still faces a fundamental problem: how to quantify its presence? In this
work, we provide a universal framework for quantifying contextuality. We conduct two complementary
approaches: (i) the bottom-up approach, where we introduce a communication game, which grasps the
phenomenon of contextuality in a quantitative manner; (ii) the top-down approach, where we just postulate
two measures, relative entropy of contextuality and contextuality cost, analogous to existent measures of
nonlocality (a special case of contextuality). We then match the two approaches by showing that the measure
emerging from the communication scenario turns out to be equal to the relative entropy of contextuality. Our
framework allows for the quantitative, resource-type comparison of completely different games. We give
analytical formulas for the proposed measures for some contextual systems, showing in particular that the
Peres-Mermin game is by order of magnitude more contextual than that of Klyachko et al. Furthermore, we
explore properties of these measures such as monotonicity or additivity.
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Introduction.—Nonlocality is one of the most interesting
manifestations of the quantumness of physical systems [1].
It exhibits the strength of correlations that comes out of a
quantum state when measured independently by distant
parties that share it, which is sometimes higher than that
coming from classical resources, and can be even higher for
superquantum but nonsignaling resources [2]. Nonlocality
has been formulated in terms of “boxes,” i.e., families of
probability distribution, and has been studied both quali-
tatively through Bell inequalities as well as quantitatively
through measures of nonlocality such as the cost of
nonlocality, distillable nonlocality [2–6], or recently as
its (anti)robustness [7].
There is, however, another phenomenon known even

earlier than Bell’s nonlocality, called quantum contextuality
[8]. Namely, for certain sets of observables, some of which
may be commensurable, their results could not preexist prior
to themeasurements, or otherwise, onewouldobtain a logical
contradiction sometimes called theKochen-Specker paradox
[9]. In recent years, this phenomenon has been studied in
depth. New examples of Kochen-Specker proofs of con-
textuality have been found [10–12] (see also Refs. [13,14]
and references therein for recent results), and the counterparts
ofBell inequalities have been introduced, however, in a state-
independent fashion [15], i.e., that are violated by any
quantum state (see also state-dependent attempts in
Refs [16,17] and [18,19] for more recent achievements).
The fact that quantum theory is contextual has been also
treated experimentally [20–22]; see also Refs. [23–26] and
references therein for recent results. In fact, the phenomenon

of nonlocality is a special case of contextuality: the com-
mensurability relations are provided by the fact that observ-
ables are measured on separate systems. Yet it is not vice
versa: the phenomenon of contextuality is more basic, as it
can hold in single partite systems.
Since the discovery of quantum contextuality there has

been a basic problem: How to quantify contextuality? Only
recently there were interesting attempts to quantify con-
textuality in terms of memory cost [27] and the ratio of
contextual assignments [28]. There were also some mea-
sures of nonlocality, which is a special case of contextuality
such as nonlocality cost [2] and relative entropy of non-
locality [29,30]. In this Letter, we propose a universal
framework of quantifying contextuality based on two
complementary approaches: (i) the bottom-up approach,
where we introduce a communication game, which grasps
the phenomenon of contextuality in a quantitative manner;
(ii) the top-down approach, where we just postulate two
measures, contextuality cost and relative entropy of con-
textuality, analogous to the above mentioned nonlocality
measures. We then match the two approaches by showing
that the measure emerging from the communication sce-
nario turns out to be equal to the relative entropy of
contextuality. We further study properties of the measures
such as faithfulness, additivity, or monotonicity, which are
analogous to that of entanglement measures. We also
compute it for some systems that possess high symmetries.
The presented approach is fully general, as it applies to

both the contextuality of the Peres-Mermin description in
which the main objects are observables [10,11] (see
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Refs. [31–33] for recent progress) as well as the original
Kochen-Specker approach [9], described by the so-called
orthogonality graphs (see Refs. [19,34–37] and references
therein). In fact, our measure gives the natural quantitative
way to classify the contextual systems that differ in
underling structure and identify possible structural proper-
ties needed to obtain high contextuality.
How to quantify contextuality.—Quantum contextuality

clearly manifests that quantum mechanical world which
cannot be described by a joint probability distribution over
a single probability space: there are systems where statistics
of observables (some of which are jointly measurable, form
a context) cannot be described by a common joint prob-
ability distribution. In other words, joint probability dis-
tribution that reproduces statistics of some contexts, see
Fig. 1(a), at the same time cannot reproduce statistics of
other contexts, see Fig. 1(b). For this reason, if we would
like to simulate such a system we need at least two common
joint probability distributions—see Fig. 1(c) where each of
them has to fail in reproducing statistics of some context.
Thus, for contextual systems there are inevitable correla-
tions between the contexts and the common joint proba-
bility distributions, whereas for noncontextual systems the
“which context information” is inaccessible via the joint
probability distribution. We will quantify these correlations
by means of mutual information since they vanish if and
only if the system is noncontextual. This quantity will be
called the mutual information of contextuality (MIC). We
further show that it equals another quantity that can be
viewed as an analogue of relative entropy of entanglement,
which we call “relative entropy of contextuality.”We study
properties of this measure, showing its additivity for some
systems, as well as monotonicity under some set of
operations. We then compute it for some known systems,
developing a technique of symmetrization. Finally, we
introduce the measure called “cost of contextuality” and
compute it for some systems.

To formalize the above ideas, we consider a set of
observables V, some of which are commensurable. Each set
of mutually commensurable observables we call a “con-
text” and assign to it a number c. With each context its joint
probability distribution over observables that form it is
denoted as gðλcÞ. The set of such contexts fgðλcÞg we call a
“box.” The box is noncontextual if there exists a joint
probability distribution pðλÞ of all observables in V, such
that it has marginal distributions on each context c that are
equal to gðλcÞ. Otherwise, we call it contextual.
For illustration, the family of contextual boxes we

describe here the so-called chain boxes. The nth chain
box, denoted as CHðnÞ is based on n dichotomic observ-
ables A1; A2;…; An, with the n contexts defined as neigh-
boring pairs of observables Ai; Aiþ1mod n. The distributions
of these contexts are fully correlated for all but the last
context and fully anticorrelated for the last one, i.e., An, A1

[38]. Note that CHð4Þ is the well-known Popescu-Rohrlich
(PR) box. The boxes which have only two types of
distributions of contexts, equally weighted bit strings with
parity 0 and equally weighted bit strings of parity 1 we call
XOR boxes. The pair of a set of observables and set of
contexts form a hypergraph. The hypergraphs of exemplary
XOR boxes [39] that we consider in the Letter are depicted
in Fig. 1 in the Supplemental Material [41].
The “which context” game.—To formalize the introduc-

tion of the MIC measure, we consider the following game
with three persons [Fig. 2]: Alice and Bob (the sender and
receiver) and Charlie (adversary). Let the parties preagree
on some a priori fixed box B ¼ fgðλcÞg in hands of Alice.
The goal of Alice is to communicate a number of a context
c to Bob, through the hands of Charlie. To this end, she
chooses the best probability distribution fpðcÞg and sends
c drawn according to it as a challenge to Charlie. Charlie is
bounded to do the following: create a distribution Ac over
all variables in VG, such that it is compatible with gðλcÞ on
observables that form context c, and send it to Bob. The
goal of Charlie is opposite to that of Alice: he wants to
diminish the communication of c in this way. Information
about context c is given by variable Ac. The amount of
correlations between Alice and Bob, given Alice’s choice
of distribution fpðcÞg achievable in this game, is

IfpðcÞgðBÞ≔min
Ac

I

�X
c

pðcÞjcihcj ⊗ Ac

�
; (1)

which is the mutual information of contextuality given a
priori statistics fpðcÞg of a box B. We use here Dirac
notation only for convenience, meaning a classically
correlated system of variables Ac correlated with register
holding value c. Optimizing over strategies of Alice, we
obtain the MIC for a box B, i.e., the following quantity:

ImaxðBÞ ¼ sup
fpðcÞg

IfpðcÞgðBÞ. (2)

(a) (b)

(c)

FIG. 1 (color online). Exemplification of contextuality of
systems of observables (A1;…; A5) (a) Contexts (here neighbor-
ing Ai): observables within each context are jointly measurable so
that we can ascribe joint probability within context. (b) Ascribing
single common joint probability distribution, which has margin-
als equal to that ascribed in (a) is not possible. (c) Exemplary
possible description of the system: by means of two different
common joint probability distributions, neither of which repro-
duces statistics of some context, the left that of A1, A5 and the
right that of A3, A4.
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which reports how much correlations Alice and Bob can
obtain in this game.
We will argue now that this quantity reports how

contextual is box B. Suppose first that B is noncontextual.
Then by definition there exists a single joint probability
distribution A over all observables in VG with marginals
gðλcÞ on contexts c; hence, ImaxðBÞ ¼ 0. However, in the
case of contextual box B, by definition Charlie has to use at
least two joint probability distributions of all observables in
VG so that on observables of context c, the distribution is
gðλcÞ. Thus, by compactness argument, the value ImaxðBÞ is
strictly positive.
(Uniform) relative entropy of contextuality.—We now

introduce another measure based directly on the notion of
relative entropy distance, in analogy to the measure of
nonlocality introduced in Ref. [29]. The first variant, called
relative entropy of contextuality, is defined on any box

B ¼ fgðλcÞg ∈ CðnÞ
G as follows:

XmaxðBÞ≔sup
pðcÞ

min
fpðλÞg

X
c∈EG

pðcÞDðgðλcÞ∥pðλcÞÞ (3)

where DðgðλcÞ∥pðλcÞÞ ¼
P

igðλcÞi logf½gðλcÞi�=½pðλcÞi�g
is the relative entropy distance between distributions
gðλcÞ and pðλcÞ [42,43]. The minimization is taken over
all distributions pðλÞ over ΩðA1Þ ×… ×ΩðAkÞ with mar-
ginal distribution on context c equal to pðλcÞ, and
supremum is taken over probability distributions pðcÞ on
the set of numbers of contexts f1;…; ng.
A natural quantity is also the one which does not

distinguish the contexts; i.e., instead of maximization,
we set pðcÞ ¼ 1=n for all c

XuðBÞ≔min
pðλÞ

X
c∈EG

1

n
DðgðλcÞ∥pðλcÞÞ (4)

where n is number of contexts. We call it the uniform relative
entropy of contextuality. By definition, we have Xmax ≥ Xu,
but in general these measures are not equal since they differ
on direct sum of contextual and noncontextual boxes (see
Supplemental Material Section V [41]).
At first, it seems that mutual information of contextuality

and relative entropy of contextuality are different, and it is
not clear how they are related. Interestingly, one can show
that they are equal to each other (see Supplemental Material
Theorem 1 [41]), that is,

Xmax ¼ Imax. (5)

We note here that Xu and Xmax (and, hence, Imax
according to the above result) are faithful.
Analytical formulas.—We calculate now the value of Xu

and Xmax for the boxes called isotropic XOR boxes. To give
an example of isotropic XOR boxes, we consider here the
isotropic chain boxes

CHðnÞ
α ¼ αCHðnÞ þ ð1 − αÞCH0

ðnÞ (6)

where CH0
ðnÞ is the CHðnÞ box with correlations and

anticorrelations replaced with each other. We just give
an idea of how to calculate the (uniform) relative entropy of
contextuality for CHα

ð4Þ, which is the isotropic Popescu-
Rohrlich box denoted as PRα; the detailed proof for other
XOR boxes is shown in the Supplemental Material Sections
III and IV [41]. The techniques employed are analogous to
those used in entanglement theory, including twirling [44]
as well as using symmetries to compute measures based on
distance from the set of separable states [45,46], and they
were applied in the case of nonlocality, e.g., in
Refs. [47,48]. We first compute the value of Xu and then
argue that it equals Xmax for the isotropic boxes. In order to
compute Xu, we observe that for isotropic boxes the
minimum in its definition can be taken only over those
probability distributions pðλÞ that give rise to an isotropic
box, and pðλcÞ is the marginal of pðλÞ (see the
Supplemental Material Theorem 3 [41]).
Let us consider an example of PRα box (the other

examples of isotropic XOR boxes follow similar lines;
see the Supplemental Material Section IV [41]), for which

XuðPRαÞ ¼ min
pðλÞ¼PRα0

ð1=4Þ
X
c

DðgðλcÞ∥pðλcÞÞ; (7)

where pðλÞ runs over distributions which are from the
family of isotropic boxes [47,48] that are noncontextual.
Since any noncontextual box compatible withGð4Þ

CH has to
satisfy the inequality that is equivalent to the CHSH inequal-
ity, we have 1

4
≤ α0 ≤ 3

4
(see the Supplemental Material

Section IV [41]). The next step is to observe that relative
entropy does not change under reversible operations such as
in the bit-flip of an output of an observable (see the
Supplemental Material Lemma 6 [41]), which gives

XuðPRαÞ ¼ min
1
4
≤α0≤ 3

4

DðαPð2Þ
even þ ð1 − αÞPð2Þ

odd∥α0P
ð2Þ
even þ ð1 − α0ÞPð2Þ

oddÞ.

Because all isotropic XOR boxes have the above property that
XuðBαÞ equals a single term of relative entropy nomatter how
many contexts the box B has, we have that for these boxes
Xmax ¼ Xu (see Supplemental Material Theorem 7 [41]). It is
then easy to show that for α ≥ 3

4
there holds

FIG. 2 (color online). The “which context” game. The adver-
sary (A) creates Ac which has context c as that of a chosen box B
such that he minimizes communication from sender (S) to
receiver (R).
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XmaxðPRαÞ ¼ XuðPRαÞ ¼ log

�
4

3α

�
− hðαÞ; (8)

where hðαÞ ¼ −α log α − ð1 − αÞ logð1 − αÞ is the binary
Shannon entropy. For α ≤ 1

4
, XuðPRαÞ equals the value

of XuðPRð1−αÞÞ according to the above equation. On
Fig. 3 we present values of measure Xu for chosen

chain boxes CHðnÞ
α (quantum ones provided in Ref. [38] and

maximally contextual ones).
Comparing contextuality in different scenarios.—

Although we have formulated the paradigm of quantifying
contextuality using the picture of sets of jointly measurable
observables (which is described by a hypergraph) [11], our
measures can be applied if additional constrains are
imposed, such as mutual exclusiveness, as in the original
Kochen-Specker approach. The latter condition means that
the observables are binary, and in each context we require
that the outcome 1 can occur only for one observable.
Quantum mechanically, this is achieved by taking observ-
ables to be one-dimensional projectors, and within each
context the projectors are mutually orthogonal. In this case,
the hypergraph is then equivalently expressed by the so-
called orthogonality graph. Our approach allows us now to
compare the strength of contextuality coming from those
two approaches that at first sight looks quite incomparable.
We find that the Peres-Mermin (PM) box [10,11] (belonging
to first approach) has Xmax ¼ Xu ¼ log 6

5
≈ 0.2630, while

for the Klyachko et al. [19] (KCBS) box, that is, based on
the original Kohen-Specker approach, the measure turns out
to be of order of magnitude smaller Xmax ¼ Xu ≈ 0.0467
(see Supplemental Material subsection V D [41]). This
partially reflects the difference of Hilbert dimensionality
between the two boxes (d ¼ 4 versus d ¼ 3) and observ-
ables (6 versus 5) but may also suggest the generally more
friendly character of Peres-Mermin-type games [10,11] for
computational tasks (see also Conclusions below).
Properties of the measures.—One of the most welcome

properties of the measure would be its additivity. In
Supplemental Material Theorem 9 [41], we show that
for families of isotropic XOR boxes Xu and Xmax are
two-copy additive, i.e., XuðB⊗kÞ ¼ XmaxðB⊗kÞ ¼ kXðBÞ
for k ¼ 2. For boxes that are extremal within the family

of isotropic XOR boxes (such as CHðnÞ, PM, M), Xu and
Xmax are additive; i.e., the latter statement is true for any
natural k ≥ 1. We conjecture, however, that proposed
measures are additive for all isotropic XOR boxes.
Another welcome property would be monotonicity of Xu

and Xmax under operations which preserve contextuality. We
answer partially this question showing in Supplemental
Material subsectionVA [41] that they are nonincreasing under
a natural subclass of contextuality-preserving operations.
The contextuality cost.—Another approach is to base on

some known measures of nonlocality and define it properly
for all (also one-partite) boxes. This leads us to the
contextuality cost, which we define as follows:

CðBÞ≔ inffp ∈ ½0; 1�jB ¼ pBC þ ð1 − pÞBNCg (9)

where infimumis takenoverall decompositionsofboxB into
mixtureofsomenoncontextualboxBNC andsomecontextual
box BC. This measure inherits after nonlocality cost the
property that it is not increasing under operations that
preserve noncontextuality [49]. This holds for the same
reason for which the antirobustness of nonlocality is non-
increasingunderaclassof locality-preservingoperationsas it
is shown in Ref. [7]. We note also that this measure is by
definition faithful, and one can easily compute it using linear
programming [3]; it is, however, not extensive, i.e., is not
proportional to dimension of the system. For the families of
isotropic XOR boxes, it can be found analytically, for
α ≥ ðn − 1Þ=n, that CðPMαÞ ¼ 6α − 5, CðMαÞ ¼ 5α − 4
and CðCHα

ðnÞÞ ¼ nα − ðn − 1Þ (in the same way as shown

in Ref. [50] that CðPRαÞ ¼ 4α − 3).
Conclusions.—We have proposed a universal framework

to quantify contextuality. In particular, we have introduced
measures of state-dependent and independent contextuality
that are valid for both the single and many-party scenarios.
It allows us to compare quantitatively completely different
contextual boxes and can be explicitly calculated, showing
in particular that the Peres-Mermin box is as a resource
significantly more contextual than the Klyachko et al. one.
Our measure is defined in an information-theoretic manner;
hence, it would be interesting to investigate possible
relationships between the measure and entropic tests of
contextuality put forward in Refs. [51,52] (which have their
roots in entropic Bell inequalities [53]). In the context of
recent connection of contextuality and quantum speed up
[54] our findings may help to quantify the presence of
contextual measurements in one-way quantum computa-
tion and their relation to quantum speed up in such a model.
Note that our approach can be developed in a few different

ways. First, one can define analogous measures to Xu
and Xmax setting variational distance in place of relative
entropy. One can also consider a measure defined as
minAc

suppðcÞ Ið
P

cpðcÞjcihcj ⊗ AcÞ, i.e., with changed
order of min and sup in Eq. (2) which for nonlocal boxes
has been studied in Ref. [29]. This measure has more
communicationalmeaning thanXmax; it isminimal capacity

10 20 30 40 50
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FIG. 3 (color online). Values of measure Xu for CHðnÞ
α boxes

for 3 ≤ n ≤ 50: maximally contextual boxes (upper points,
α ¼ 1); maximally contextual quantum boxes (lower points)
with (i) odd n, α ¼ ½2 cosðπ=nÞ�=½1þ cosðπ=nÞ� and (ii) even
n, α ¼ ½1þ cosðπ=nÞ�=2.
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of the channel from sender to receiver under adversary’s
attack. Note that another way of defining relative entropy
of contextuality would be to consider a quantity defined
on a box B compatible with graph G as X�ðBÞ≔
infBNC∈NCG

DðB∥BNCÞ, where D denotes relative entropy
of the boxes B and BNC defined operationally via distin-
guishability of boxB fromboxBNC in Ref. [55]. It would be
interesting to relate such a defined measure with Xmax and
Xu. Note also that following Ref. [7] it is easy to define and
study the notion of (anti)robustness of contextuality.
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