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The conformational statistics of ring polymers in melts or dense solutions is strongly affected by their
quenched microscopic topological state. The effect is particularly strong for nonconcatenated unknotted
rings, which are known to crumple and segregate and which have been implicated as models for the generic
behavior of interphase chromosomes. Here we use a computationally efficient multiscale approach to show
that melts of rings of total contour length L, can be quantitatively mapped onto melts of interacting lattice
trees with gyration radii (R2(L,))  L? and v = 0.32 £ 0.01.
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Similar to macroscopic strings tied into knots, the
(Brownian) motion of polymer chains is subject to topo-
logical constraints: they can slide past each other, but their
backbones cannot cross [1,2]. For linear chains, entangle-
ments are transient and irrelevant for the equilibrium sta-
tistics: chains with a contour length exceeding the material
specific Kuhn length, L > [, show Gaussian behavior
with mean-square end-to-end distances (R*(L)) = IxL.
The only effect of the constraints is to slow down the chain
dynamics beyond a density dependent entanglement (con-
tour) length, L,, a corresponding spatial distance or “tube”
diameter, dr < \/IxL,, and a characteristic entanglement
time, 7, [3,4]. For loosely entangled systems, which are
flexible at the entanglement scale, L, ~ (20/(pxly))> > Ik
[5-7], where pg is the number density of Kuhn segments.

The situation is different for unlinked polymer melts or
solutions, where the chain conformations have to respect
(long-lived) global constraints enforcing the absence of
topological knots and links [8]. Experimentally prepared
systems of this type have interesting materials properties
[9,10]. With large (interphase) chromosomes [11-17] the
most prominent representatives are probably found in
biological systems. In this case, the relaxation times for
the topological state may be of the order of centuries [12,18],
making the knot- and link-free state sufficiently long lived to
merit attention. The best studied and yet still controversial
[15] example are melts of nonconcatenated unknotted ring
polymers. Values for the characteristic exponent v relating
the average-square gyration radius and total contour length
(RZ(L,)) o« L3* of proposed models range from v = 1/4 for
ideal lattice trees or animals [19,20], v = 1/3 for crumpled
globules [21], Hamiltonian paths [13,22], and interacting
lattice trees [19,23]; v = 2/5 [24] from a Flory argument
balancing the entropic cost of compressing Gaussian rings,
and the unfavorable overlap with other chains (recently
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refined to v = 1/3 for the asymptotic behavior [25]); tov =
[1—1/(37)]/2~0.45[26],andv = 1/2 for Gaussianrings,
rings folded into linear ribbons [27], and swollen lattice trees
[28]. There is now strong numerical evidence [14,29-33] for
a crossover to an asymptotic v ~ 1/3 regime around Z, =
L,/L, = 10[33]. Butitis still not clear, which “strategy” the
rings “adopt” to maximize the entropy of the solution.

In the following, we present results from a multiscale
approach allowing us to identify the underlying physics
and to access significantly larger system sizes than previous
studies [14,29-33]. At the fiber level, we use molecular
dynamics (MD) simulations of a bead-spring model for
30 nm chromatin fibers (see Ref. [12] and the Supplemental
Material [34]). With Z, = 115 our largest MD equilibrated
rings are comparable in effective size to those of other
recent computational studies [14,29-33]. In addition, we
investigate a wide range of theoretically inspired and
computationally much more efficient lattice models for
the large scale behavior (Fig. 1). These models (studied
using Monte Carlo simulations for ring sizes up to
Z, =900) are discretized on the Kuhn scale of the fiber
model, allowing us to “fine grain” results to corresponding
off-lattice conformations of nonconcatenated and unknot-
ted rings for the fiber model (see Supplemental Material
[34]). The various models provide us with a sufficient range
of qualitatively different initial states (Fig. 1) to validate
the proper equilibration of our MD simulations [14] [see
Fig. 2(a) vs its inset]. Moreover, by comparing identical
observables for MD equilibrated target systems and model
derived ensembles, we automatically account for numerical
prefactors and crossovers in the test of the underlying
physical ideas (Figs. 2 and 3). To adapt a well-known quote
from Feynman, it is by attempting to construct equilibrated
systems that we test our understanding of the factors
controlling them.
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FIG. 1 (color online).

Ring conformations derived from lattice models at various stages of MD equilibration. Top row: schematic

view with dots representing vertically oriented sections of other chains or topological obstacles. Second row: at the beginning of
MD simulation, ¢ = 0; third row: after local MD equilibration on the entanglement scale, r = z,; bottom row: after complete
MD equilibration, ¢ > 10°z,. Columns: (a) Ribbon conformation with Z, = 38 constructed around a linear random walk. (b) Ring
conformation with Z, = 38 following a space-filling Moore curve. (c) Ribbon conformation with Z, = 115 constructed around an
unbranched path following a space-filling Hilbert curve. (d) Ribbon conformation with Z, = 38 constructed around an ideal lattice tree.
(e) Ribbon conformation with Z, =900 constructed around a randomly branched tree from a lattice tree melt (only model
configurations at = 0 and ¢ = 7, are shown). Boxes indicate the volume, V = (L,/lg)/pk, available to one ring. Following [13] we
have used a color code linked to the monomer index. For details, please zoom into the electronic version of this figure.

Theoretical descriptions of ring melts have either asso-
ciated the strength of the topological interactions with the
threadable volume [24,25] or the threadable surface
[19,20,27,28] that rings present to each other. Both
approaches correctly predict the density dependence of the
entanglement scale [7,24]. By taking the limit of zero
threadable surface, proposals of the second type are easily
translated into algorithms for constructing putative equilib-
rium states. Consider the idea [27], that ring polymers might
fold into linear ribbons to freely thread between each other or
between topological obstacles [Figs. 1(a)], while adopting
noncompact (v = 1/2), spatially overlapping configura-
tions. From a computational point of view, it is straightfor-
ward to assemble such solutions by randomly superimposing
chains with random walk statistics and locally “pushing off”
overlapping monomers [36]. In a second step, we construct
bead-spring ring conformations as tightly closed ribbons
along the contour and within the molecular volume of these
chains (see Supplemental Material [34]). By construction,
the rings are neither knotted nor topologically linked.
The conformational statistics can be tuned to be in almost
perfect agreement with the corresponding (open) Gaussian
rings with (R*(L)) = IxL(1 —L/L,) [Fig. 1(a) and S1
in the Supplemental Material [34]]. For ring sizes
up to a few entanglement lengths, long (up to ~10%z,)
MD equilibration runs (see Table SIIIA in [34] for details)
hardly affect the conformational statistics. However, larger
rings undergo substantial shrinking and changes of shape
(Figs. 1(a) and 2(a), and Table SIIIB in [34]).

A very different picture arises from the analogy to
“crumpled globule” [21] conformations resulting from
the collapse of swollen (and hence nearly knot free
[37,38]) polymer chains, when solvent conditions are
rapidly switched from good to poor [39]. Rapid mechanical
confinement leads to similar, albeit also not particularly
stable or well-defined states [40,41]. Constructing melt
states from nonoverlapping crumpled globules obviously
avoids the formation of topological links between different
rings. It is often argued that the essential features of the
chain conformations are represented by unknotted fractal
space-filling curves [13,21,22]. In this case, the ring
dimensions can be directly inferred from the contour
length density, [xpg, of the solution. For cubic unit cells
and in entanglement units, the occupied volume equals

(62/20)d3Z, where dr=/(R%(L,))=+/IkL./6 denotes

the tube diameter. Admissible chain lengths are multiples
of 8 of an elementary length Z,, which follows from the
mapping of the contour length density in the elementary
cell of the fractal construct (see Supplemental Material
[34]). Here we use the Moore curve, which is the loop
version of the Hilbert curve [42,43] with identical local
properties. We have constructed Moore conformations for
rings of Z,=L,/L,=5,38,307 entanglement lengths
using a recursive mathematical algorithm (Fig. 1(b) and
the Supplemental Material [34]). As an intermediate
between the first two models, we have constructed compact
ribbon conformations, where the ribbon axis follows a
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FIG. 2 (color online). (a) Mean square gyration radius (R2) of
rings of contour length L, normalized to the square gyration
radius of an ideal Gaussian ring of contour length = L,. Solid
lines: analytical and numerical predictions for the polymer
models from Fig. 1. The dashed line marks the range where
the exponent 2v = 0.64 is observed. Filled symbols: (RZ) after
MD equilibration. (Inset) Open symbols: (R2) for the initial states
of the simulations at r = (0. Magenta points for the interacting
lattice tree model are also shown in the main panel. (b) Reduced
self-density, pg¢, of chains at their centers of mass. Asymmetry
ratios for Gaussian linear and ring polymers are 11.79:2.53:1.00
and 6.14:2.28:1.00 [35], respectively.

Hilbert curve instead of a random walk (Fig. 1(c) and see
the Supplemental Material [34]). In this case admissible
chain lengths are Z,=0L,/L,= 14,115,926 (see
Supplemental Material [34]). Moore rings and Hilbert
ribbons have similar conformational statistics [44]. The
typical size grows like (R?(L)) ~ L3 as long as L < L,,
but Hilbert ribbons are locally less crumpled. We have
performed long (up to ~5 x 10°7,, Table SIIIA in [34]) MD
simulations to equilibrate the systems with Z, < 115. In all
cases we observed substantial swelling and, hence, overlap
of rings with their spatial neighbors [Figs. 1(b),1(c), and 2,
and Table SIIIB in [34]].

A key insight [19,20,28] for the understanding of ring
crumpling is the observation that rings, which are not
entangled with fixed topological obstacles, can increase their
entropy by folding into branched rather than linear ribbons
[Fig. 1(d)]. In this case, the randomly branched ribbon axis
resembles a lattice tree or lattice animal without internal
loops. A number of exact results are available for the
statistical properties of noninteracting, ideal systems
[19,45-47]. In particular, v = 1/4 for AL > 1, where 1 is
the branching probability per unit length [47] of the ribbon
axis. By fitting the semiempirical expression combining
Eq. S2 and Eq. S3 in [34] to the measured (R2) for the

first 4 equilibrated rings systems, we find that for
A= (0.40 £0.05)/Ix the predicted gyration radii are in
excellent agreement with our MD results [Fig. 2(a)]. To allow
for a detailed comparison, we have performed Monte Carlo
simulations of randomly branched chains using the
“amoeba” algorithm [48]. These were assembled into dense
solution structures [36] before we built the corresponding
branched ribbon conformations as models for the ring
solutions (see Fig. 1(d) and the Supplemental Material [34]).

The bottom row of Fig. 1 illustrates that the final
conformations of our MD runs resemble indeed the
constructed branched ribbon conformations shown in
column (d). In particular, the other unbranched starting
conformations of our simulations all developed strongly
branched loops. The quantitative analysis shows that for
Z.=L,/L, <10 there are no significant differences
between the conformations of rings equilibrated via MD
and of rings we have derived from ideal lattice trees
conformations [Fig. 2(a) and Table SIIB in [34]). In
particular, we find excellent agreement for the ring gyration
radii, (R2) = (Tr(S)) [Fig. 2(a)], the asymmetry ratios of
the average eigenvalues of the gyration or shape tensor,
Sap = (1/N) YN, (Fig = Fem.a) (Fip — Fem.p) (Table SIIB
in [34]), and the reduced self-density of the rings at their
centers of mass (c.m.) ﬁself(Lr) Epself(;;c.m.’ Lr)/p =
(Pebainy/ (27)3 det(S)) ™" [Fig. 2(b)]. Moreover, we find
[44] that the ideal lattice tree model also describes the
internal structure and dynamics [20,49,50] of larger rings
on length scales up to Z, ~ 10. Deviations become manifest
on the scale of Z, ~ 100 entanglements. As predicted in
Ref. [19], the ring gyration radii enter a compact (v =~ 1/3)
regime instead of crossing over to the characteristic
v =1/4 regime of strongly branched ideal lattice trees
(Fig. 2 and Ref. [33] for a compilation of corresponding
data from previous simulation studies).

The breakdown of the ideal behavior is best analyzed in
terms of the predicted and observed reduced self-densities,
pser(L,) ~L,/(R3(L,))*?, using known [35] or our
measured ratios of the eigenvalues of the gyration tensor.
Consider first a solution of linear polymers with Gaussian
statistics. We note that the standard entanglement length
can be estimated from the condition pye(L,) =1/2
[Fig. 2(b)]: fluctuations of a chain segment are subject
to a (transient) topological constraint, if its center of mass
coincides with the center of mass of a second segment of
equal length. This observation is in excellent agreement
with the binary character [51] of entanglements as revealed
by a primitive path analysis [52]. For linear chains these
constraints do not affect the equilibrium conformational
statistics. Long chains strongly interpenetrate with
Pett(L,) = 0.5(L,/L,)"/> =0.5Z;"/*, with the conse-
quence that interactions are well described by mean-field
models. The nearly [53] ideal Gaussian behavior is due to
almost perfect screening [3]: any reduction in repulsive self-
contacts in more extended single chain conformations is
balanced by an equivalent increase in the number of contacts
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with other chains. The situation is qualitatively different in
melts of nonconcatenated ring polymers. As we have shown
above, the conformational statistics is controlled by branch-
ing on the entanglement scale. According to the ideal lattice
tree model, the self-density should reach a minimum of
Deeit (L) = 0.8 for L/l ~ 120 or Z} ~ 30 followed by an

increase, Pge(L,) ~ LY* for Z, > Z:.Instead, the observed
self-densities stabilize around Z; at the entanglement thresh-
old pyr = 0.5 < 1 [Fig. 2(b)]. In particular, the mutual
overlap is drastically reduced compared to linear chains.
The resulting reduced efficiency of screening leads to a
breakdown of the ideal behavior in branched polymer
solutions. While Flory arguments yield v = 3/10 [54]
and v = 4/13 [23] for randomly branched polymers with
quenched and annealed connectivity [55] in d = 3 dimen-
sions, the chains are expected to swell asymptotically to
v = 1/d in both cases [19,23,47]. For comparison, v = 1/2
in d =3 dimensions for self-avoiding lattice trees with
unscreened excluded volume interactions [56].

To take molecular and topological [57] excluded volume
interactions into account, we have introduced volume
interactions into a multichain version of our Monte Carlo
code for randomly branched polymers and run simulations
for randomly branched chains of lengths 1 < Z, < 900 (for
details, see the Supplemental Material [34]). Figure S3 in
[34] demonstrates that starting from unbranched, random-
walk-like configurations the chains reach more compact
equilibrium configurations [panel (a)], while moving several
times over distances corresponding to their average size
[panel (b)]. Compared to the fiber model, the computational
effort required for equilibration in the interacting lattice tree
model is reduced by as much as 6 orders of magnitude (see
Table SII in [34]). This allowed us to increase the inves-
tigated ring sizes from Z, = O(100) (fiber MD) to Z, =
O(1000) (tree MC) and to simultaneously increase the
system sizes from M = O(10) to M = O(100), the number
of independent runs from M = O(1) to M = O(100) and
the number of statistically independent configurations for
the largest rings from O(10) (fiber MD, Table SIII in [34])
to O(1000) (tree MC, Table SI in [34]). Generalizations to
coarser representations are straightforward and would
increase the speed-up even further.

As demonstrated by Fig. 2 (magenta vs blue lines),
excluded volume interactions lead to negligible deviations
from the ideal behavior for tree sizes up to Z, = O(10).
Beyond this size, the interacting trees exhibit swelling. In
agreement with the theoretical arguments, we observe for
30 < Z, <900 an effective exponent of v = 0.32 £ 0.01
(Fig. 2). Interestingly, the corresponding self-densities
remain close to the entanglement threshold, py; = 0.5 < 1
[Fig. 2(b)], corresponding to a fractal structure where each
partexperiences the same amount of overlap and interactions
with (or constraints due to) its spatial neighbors [22,58].

From the tree melt conformations we have again derived
“fine-grained” ring melt structures [Fig. 1(e)]. The resulting
conformations can be directly compared to the reliably
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FIG. 3 (color online). Comparison of the conformational
statistics of fully equilibrated rings (symbols) and of rings derived
from lattice tree melt conformations (solid lines). (a) Mean-
square internal distance, (R?*(L)). (b) Bond autocorrelation
function (BACF). (c) Contact probability p.(L) taken at contact
radius = 20, with p (L)~ L~1113991 (d) Overlap parameter.
Data in panels (a), (c), and (d) extend up to 1/4 of the
corresponding rings contour lengths.

equilibrated reference structures we have obtained by
brute-force MD simulation for ring sizes 5 < Z, < 115.
The agreement is excellent. This holds equally well for
the ring gyration radii (magenta line and symbols in Fig. 2)
and asphericities [44], as for measures of the internal
structure (Fig. 3): (a) the mean-square spatial internal
distance (R*(L)); (b) the bond-angle correlation function
BACF = (1/N) > | (#; - 1;11,,), where1; is the normalized
bond vector between ring monomers i and i + 1; (c) the
contact probability p, (L)~ L= for /L, > 10,
which is particularly relevant in the context of chromo-
some-chromosome interactions measured by HiC [13],
and where we significantly extend the validity range of
earlier results [32,59]; (d) the overlap parameter Q(L)=
(pxlx/L)(R*(L))*?, which converges to the entanglement
threshold, Q = 20 [5-7]. In all cases, the modulo-N indexing
due to the ring periodicity is implicitly assumed.

To conclude, we have used computer simulations to
study dense solutions of nonconcatenated and unknotted
ring polymers. Conceptually, we find strong evidence for
the scenario that rings crumple by adopting lattice treelike
ribbon structures characterized by randomly branched
looping on the entanglement scale [19,20,28] and by an
exponent v = 1/3 due to incomplete screening of excluded
volume interactions [19,23] (but see [25] for an alternative
explanation of the observed crossover disregarding the
internal structure). Technically, we now dispose of a
quantitative multiscale method for simulating knot- and
link-free polymer solutions, which provides access to
significantly larger system sizes than simulations at the
fiber level alone. We note that with M = 64 rings of length
Z, = 900 ~ 10® DNA base pairs of our largest systems are
comparable in size to the nucleus of a human cell [12],
suggesting that it might become possible to include
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generic topological constraints [11,12,15] into attempts to
reconstruct or predict the three-dimensional folding of
chromosomes in interphase nuclei [17,60].
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