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We study the collective motion of confined spherical microswimmers such as active colloids which we
model by so-called squirmers. To simulate hydrodynamic flow fields including thermal noise, we use the
method of multiparticle collision dynamics. We demonstrate that hydrodynamic near fields acting between
squirmers as well as between squirmers and bounding walls crucially determine their collective motion. In
particular, with increasing density we observe a clear phase separation into a gaslike and cluster phase for
neutral squirmers whereas strong pushers and pullers more gradually approach the hexagonal cluster state.
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The collective motion of microorganisms and artificial
micro- and nanoswimmers has attracted a lot of attention
among physicists [1–3]. Since swimmers propel themselves
autonomously through a fluid, they are constantly out of
equilibrium; understanding their collective properties has
become a paradigm of statistical mechanics. Simple model
systems to experimentally study nonequilibrium collective
motion are spherical colloids such as active Janus particles
[4–7], active emulsion droplets [8], or Volvox algae [9,10].
All these experiments have been performed in a quasi-2D
geometry where the spherical particles move in (almost) a
plane bounded by one or two walls. They show interesting
nonequilibrium features like dynamic clustering [5,6] and
swarming [8], but also phase separation [7].
While equilibrium phase separation is commonly

induced by attractive interparticle forces, motility-induced
phase separation simply occurs due to the activity of the
particles, without any aligning mechanisms or attractive
forces. Recently, phase separation of spherical swimmers
has been studied extensively by means of 2D Brownian
dynamics (BD) simulations of active Brownian disks
[6,7,11–14] or dumbbells [15], and by continuum models
introducing density-dependent velocities for active par-
ticles [16–19]. Nevertheless, the fact that active colloids
typically move in an aqueous environment at low Reynolds
number, where they interact with each other and also with
bounding walls via hydrodynamic flow fields, has not been
considered in these studies.
Biological microswimmers use a nonreciprocal defor-

mation of their cell body or appendages like flagella and
cilia to propel themselves through a fluid [20]. Active
colloids and droplets, in contrast, create a tangential slip
velocity close to their surface which pushes them forward.
Hence, they can be modeled by the so-called “squirmer”
that propels itself by a prescribed axisymmetric surface
velocity field [21–23]. Experiments and theory show that
the flow field of an active droplet is well approximated by
the flow field of a squirmer [8,24].

Several studies exist of the collective dynamics of squirm-
ers in bulk [25–29]. While phase separation has not been
observed, squirmers can exhibit polar order [26–28] and
collective motion in a monolayer [30]. However, the mono-
layer is unstable and thus does not describe a real system of
confined active colloids. Recent studies on 2D squirming
disks do not show cooperative behavior [31,32] and it is
argued that phase separation is suppressed [31].
Motivated by experimental systems [8,10], we present

here a detailed numerical and thereby realistic study of the
collective dynamics of spherical microswimmers in a quasi-
2D geometry, including their full 3D rotation. By means of
the method of multiparticle collision dynamics (MPCD),
we simulate the hydrodynamic flow field initiated by
squirmers including thermal noise. We demonstrate that
hydrodynamic near fields acting between squirmers as
well as between squirmers and bounding walls crucially
determine their collective motion. In particular, phase
separation into a gaslike and cluster phase depends on
the squirmer type.
Our system consists of N squirmers of radius R that

propel themselves in a fluid by a prescribed surface velocity
field. For the ith squirmer it is given by [23]

vðiÞs ¼ B1ð1þ βeðiÞ · r̂ðiÞs Þ½ðeðiÞ · r̂ðiÞs Þr̂ðiÞs − eðiÞ�; (1)

where eðiÞ is the swimming direction and r̂ðiÞs the unit vector
which points from the center rðiÞ of the squirmer to its
surface [Fig. 1(a)]. The constant B1 determines the bulk
swimming speed v0 ¼ 2B1=3 [21] and therefore the char-
acteristic time scale R=v0 of the system. For β < 0 the
swimmer is called a “pusher,” for β > 0 a “puller,” and for
β ¼ 0 a “neutral squirmer.” The names are connected to the
different far fields of the squirmers; however, when the
concentration of the squirmers is high, hydrodynamic
interactions between them are governed by near fields
initiated by the surface velocity field of Eq. (1) [23].
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The swimmers are bounded by two hard walls located at
x ¼ �ð1þ δÞR [Fig. 1(b)]. We choose here a strong
confinement, δ ¼ 1=3, so that the swimmer trajectories
take place in quasi-2D but the squirmers can freely rotate in
three dimensions.
To simulate the flow fields created by the squirmers we use

the method of MPCD. The motion of a squirmer in bulk [33]
and in confinement and under flow [34], as well as the
pairwise interaction among squirmers [35], has already
successfully been studied with MPCD. The fluid is modeled
by pointlike effective fluid particles of mass m0 at a temper-
ature T0. They perform alternating streaming and collision
steps which are sufficient to reproduce a flow field that solves
the Navier-Stokes equations [36–39]. In the streaming step
the particles move ballistically for a time interval Δt. They
interact with the squirmers and the bounding walls via hard-
core collisions where the no-slip boundary condition is
implemented and momentum and angular momentum are
transferred. Then, in the collision step, the particles are sorted
into cubic cells with edge length a0. They interact via the
collision rule MPC-ATþa [39] where virtual particles in the
squirmers and the walls are included to improve the no-slip
boundary condition. This scheme accurately reproduces the
hydrodynamic flow field of a squirmer [33,35] and near-field
lubrication forces between squirmers [35]. To be concrete, the
fluid and squirmer mass density is ρ ¼ 10m0=a30 and we use
the time step Δt ¼ 0.02a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=kBT0

p
and fluid viscos-

ity η ¼ 16.05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0kBT0

p
=a20.

We study the dynamics of N ¼ 208 squirmers of
radius R ¼ 3a0 and bulk swimming velocity v0 ¼
0.067

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT0=m0

p
at different areal densities ϕ ∈

½0.10; 0.83� for β ∈ ½−3; 3�. We use periodic boundary
conditions in y and z directions and our confinement
parameter δ ¼ 1=3 is comparable to recent experiments
[7]. Characteristic parameters of our system are the
Reynolds number Re ¼ Rv0ρ=η ¼ 0.12, the Péclet number
Pe ¼ 2Rv0=D0 ≈ 360, and the persistence number Per ¼
v0=ð2RD0

rÞ ≈ 110 [40] (again comparable to the active
colloids in [7]), whereD0 andD0

r are the respective thermal
translational and rotational diffusivities, which we mea-
sured in bulk. The persistence number Per compares the
orientational correlation time ðD0

rÞ−1 to the time to swim
a distance 2R.

For each parameter set (β, ϕ) we performed eight
simulation runs to have sufficient data for averaging.
After a transient, the system always reached a nonequili-
brium steady state, which we confirmed by measuring the
time evolution of several order parameters which all
approached a constant accompanied by fluctuations.
Typical simulation snapshots of the system in the steady

state at medium and high area fractions ϕ (or densities for
short) are shown in Fig. 2. At low densities the system is
gaslike where no long-lived clusters exist (see also movie
M1 in the Supplemental Material [41]). In contrast, at very
high densities the swimmers aggregate and form a global
cluster with hexagonal packing (M2 in [41]). At inter-
mediate densities the transition between gaslike and crys-
talline phase occurs. Interestingly, the collective structure
of the system significantly depends on the hydrodynamic
near field the squirmers create around each other, which is
characterized by the squirmer parameter β. In particular, for
β ¼ 0 and area fractions ϕ≳ 0.5 hexagonal clusters emerge
and the system clearly separates in the gaslike and
crystalline phase. In such a phase-separated state a single
cluster forms, similar to observations in Brownian disks
[11,12]. The cluster is very dynamic since particles leave

FIG. 1 (color online). (a) Sketch of a spherical squirmer. The
prescribed surface velocity field vðiÞs generates a swimming
velocity along the unit vector eðiÞ. (b) Squirmers at positions
rðiÞ and with orientations eðiÞ move in a quasi-2D geometry
bounded by two parallel planar walls.

FIG. 2 (color online). Typical snapshots of the collective motion
of squirmers in a quasi-2D geometry depending on the area fraction
ϕ and the squirmer type (β). Also shown are active Brownian
spheres moving in quasi-2D (BD Q-2D) and active Brownian disks
moving in 2D (BD 2D). The view is from the top and the colors
indicate the local bond-orientational order jq6j2 ∈ ½0; 1�.
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and join and the cluster permanently rearranges (M3 in
[41]). There is a pronounced difference between pushers
and pullers. While pushers move in a more uniform phase
(M4 in [41]) and ultimately develop a single cluster at ϕ ¼
0.64 (β ¼ −1.5) or ϕ ¼ 0.83 (β ¼ −3), pullers, instead,
form several hexagonal structures (M5 in [41]) and only
develop a single cluster at the highest density.
To quantify our findings, we identify hexagonal clusters

by introducing the bond parameter jqðkÞ6 j2 ∈ ½0; 1� that
measures local sixfold bond orientational order of particle
k, where qðkÞ6 ≔ 1

6

P
j∈NðkÞ

6

ei6αkj . Here the sum goes over the
six nearest neighbors of particle k, and αkj is the angle
between rðkÞ − rðjÞ and a randomly chosen axis [42,43]. We
show the color-coded bond parameter jq6j2 in the snapshots
of Fig. 2. In Fig. 3 we also plot the corresponding
distributions pðjq6j2Þ for different β and ϕ. At low area
fraction ϕ ¼ 0.21 in the gaslike state, pðjq6j2Þ is similar to
what one expects for randomly distributed particles.
However, at the intermediate density ϕ ¼ 0.57 the addi-
tional pronounced maximum at jq6j2 ≈ 1 for the neutral
squirmer (β ¼ 0) shows coexistence of pronounced hex-
agonal clustering with the gaslike state and indicates phase
separation. Finally, at high density ϕ ¼ 0.83 most of the
squirmers reside in a hexagonal cluster. Note that the peaks
at jq6j2 ≈ 4=9 and jq6j2 ≈ 1=9 result from particles at the
border of this cluster.
In addition, we introduce the mean local bond orienta-

tional order hjq6j2i as a structural order parameter. Figure 4
shows hjq6j2i plotted versus area fraction ϕ for several
squirmer parameters β. While the curves for β ¼ 0 and β ¼
−1.5 have a sigmoidal shape where the steep region
indicates phase separation, the transition between the
gaslike and crystal phase occurs more smoothly for other
β. The inset of Fig. 4 shows the fluctuations of the bond-
orientational order parameter. The pronounced maximum
for β ¼ 0 at the transition point ϕ ≈ 0.50 is due to
hexagonal clusters which form and decay as shown in
movie M6 [41]. Both the sigmoidal shape and the strong
fluctuations near the critical density indicate the existence
of a nonequilibrium phase transition. However, since we

are far away from the thermodynamic limit we are not able
to determine the order of this transition.
We also show distributions of the velocity component

along the squirmer orientation, vðiÞe ¼ vðiÞ · eðiÞ (see insets
in Fig. 3), which demonstrate the effective activity of the
swimmers. As expected, at low density the distributions
show a maximum at high ve except for strong pushers
(β ¼ −3) since they orient normal to the bounding walls as
we will discuss below. For β ¼ 0 the bimodal form at ϕ ¼
0.57 confirms the phase-separated state, but the majority of
the squirmers are already in the cluster phase. Finally, at
high densities most of the squirmers block each other and
hence do not move, which is indicated by the sharp peaks
around ve ≈ 0.
In order to illustrate the influence of hydrodynamic

interactions between the squirmers, we compare our results
with BD simulations where hydrodynamic interactions are
absent. We perform both BD simulations in quasi-2D,
where the active spheres are free to rotate in 3D [41], and
pure 2D simulations as described in [12], see Fig. 2. As
reported previously, active Brownian disks in 2D phase
separate at a sufficiently high density [11,12] which we also
quantified by a sigmoidal shape of hjq6j2iðϕÞ similar to the
β ¼ 0 squirmer (curve not shown in Fig. 4). Nevertheless,
the clusters are less stable compared to the squirmers (M7
in [41]). In contrast, active Brownian spheres in quasi-2D
only develop small and short-lived clusters (M8 in [41])
and behave instead like pullers.
Literature mentions three conditions that favor phase

separation. First, it occurs at sufficiently large swimming
speeds of the active particles so that they collide frequently.
The swimmers form clusters where they become trapped
since they point towards the cluster center [7,12]. Second,
rotational diffusion has to be sufficiently small such that the
particles stay trapped, otherwise crystal nucleation is
hindered [7,12]. Third, a slow down of the swimming
speed also stabilizes the condensed cluster phase [16,18].

FIG. 3 (color online). Distributions of local bond parameter
jq6j2 and swimmer velocities ve (insets) at low (ϕ ¼ 0.21),
medium (ϕ ¼ 0.57) and high (ϕ ¼ 0.83) density for pushers
(β ¼ −3), neutral squirmers (β ¼ 0), and pullers (β ¼ 3).

FIG. 4 (color online). Bond-orientational order parameter
hjq6j2i plotted versus area fraction ϕ for pushers (β < 0), pullers
(β > 0) and neutral squirmers (β ¼ 0). Inset: Order parameter
fluctuations Δjq6j2=hjq6j2i.
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We now use these conditions to give some qualitative
arguments for the observed subtle phase behavior.
In our MPCD simulations the reorientation of the

microswimmers is mainly determined by the hydrodynamic
near field between them. Since this reorientation occurs
stochastically, it strongly contributes to rotational diffusion
[26]. We measure the rotational diffusion coefficient Dr
using an exponential fit for the orientational correlation
function heðiÞð0Þ · eðiÞðtÞi ¼ e−2Drt where we average over
all swimmers and over all runs. Depending on ϕ and β the
rotational diffusion coefficient Dr is enhanced compared to
its thermal value D0

r , in our system up to a factor Dr=D0
r ≈

25 for strong pushers at very high densities [Fig. 5(a)].
Because of lubrication torques acting between two squirm-
ers, the angular velocity of a squirmer in the vicinity of the
second squirmer depends on the difference of their surface
velocities [Eq. (1)] at the points of closest approach [23].
Lubrication torques increase with area fraction ϕ and the
averaged magnitude of the surface velocity with jβj. This
explains the major trends in the rotational diffusivity Dr in
Fig. 5(a).
Apparently, for small jβj and at a bare Péclet number

Pe ¼ 360, Dr is sufficiently small for phase separation to
occur. But why do neutral squirmers clearly phase separate
into gaslike and hexagonal structures and the active
Brownian spheres do not? The reason is that for neutral
squirmers the self-trapping mechanism for forming particle
clusters is strongly enhanced. This is due to the combined
action of hydrodynamic swimmer-swimmer interactions
that slow down the squirmers at close contact and hydro-
dynamic swimmer-wall interactions that strongly influence
the squirmer orientation. Figure 5(b) shows the distribution
of the squirmer orientation along the wall normal, so
cos θ ≈ 0 means orientation parallel and cos θ ≈�1
perpendicular to the wall [see also Fig. 1(b)]. The distri-
butions clearly depend on the type of swimmer and on
density. While at low density pullers and neutral squirmers
are oriented parallel to the bounding walls, strong pushers
tend to be oriented perpendicular to the walls, in contrast to

results from hydrodynamic far-field approximations [44].
This also explains the velocity distribution for β ¼ −3 at
low density in Fig. 3. At higher densities the permanent
interaction with other swimmers broadens the angular
distribution for pullers and even more strongly for β ¼ 0.
So, neutral squirmers are also oriented perpendicular to the
wall and thereby reduce the in-plane velocities in a cluster.
This hinders them from escaping the cluster such that self-
trapping and cluster growth is enhanced. (This orientational
effect does not occur in the 2D squirmer simulations in [31]
and might be one reason for the suppressed phase separa-
tion.) Active Brownian spheres, on the other hand, have a flat
cos θ distribution independent of density since their orien-
tations are not influenced by other particles and bounding
walls. In addition, since they do not experience hydro-
dynamic pressure acting between them, they do not slow
down unless they start to overlap. This suppresses nuclea-
tion, although their rotational diffusion constant is smaller
compared to neutral squirmers.
In Fig. 1 of [41] we combine both rotational diffusion

and mean in-plane orientation by plotting separate effective
persistence numbers Per ¼ v0hsin θi=ð2RDrÞ versus ϕ for
the gaslike and the cluster phase. In particular, for the
neutral squirmer a large PerðgasÞ and a sharp drop towards
PerðclusterÞ at ϕ ¼ 0.5 clearly indicates the onset of phase
separation.
We can calculate the preferred squirmer orientations at

low densities [Fig. 5(b)] using the lubrication approxima-
tion for a single squirmer confined between two parallel
walls [41]. The analysis confirms that a puller or neutral
squirmer moves stable or marginally stable, respectively,
parallel to the walls, while a sufficiently strong pusher has a
stable orientation perpendicular to the walls [45]. Thermal
motion and squirmer interactions then result in the dis-
tributions of Fig. 5(b). Indeed, it has been demonstrated that
thermal and nonthermal noise play an important role in
swimmer-swimmer interactions even at large persistence
numbers [35,46]. Noise might also be the reason why we
do not observe polar order though it is shown in deter-
ministic squirmer simulations in bulk [26–28].
To conclude, using the squirmer as a model swimmer

whose type can be tuned by the squirmer parameter β, we
have shown that hydrodynamic near fields determine the
phase behavior of active particles in an experimentally
relevant quasi-2D geometry. These near fields cause a
pronounced increase of rotational diffusion, slow down
squirmers during collision, and influence the squirmer
orientation, which can enhance the self-trapping in crys-
talline clusters. Neutral squirmers phase separate in a
gaslike and cluster phase accompanied by a strong decrease
in motional persistence in the cluster phase. In contrast,
strong pushers and pullers gradually develop the hexagonal
cluster. Our approach can be extended to study the
collective motion of active Janus particles which have a
different slip-velocity profile at their surface [47].

FIG. 5 (color online). (a) Rotational diffusion coefficient in
units of its thermal value D0

r versus area fraction ϕ and squirmer
parameter β. (b) Distributions of squirmer orientations for two
area fractions ϕ. θ is the angle with respect to the wall normal.
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